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Constructivism

Computational Constructivist Model 
as an Anticipatory Learning 
Mechanism for Coupled 
Agent–Environment Systems
Filipo Studzinski Perotto • Constructivist AI Research Group, France • filipo.perotto/at/ufrgs.br

> Context • The advent of a general artificial intelligence mechanism that learns like humans do would represent the 
realization of an old and major dream of science. It could be achieved by an artifact able to develop its own cogni-
tive structures following constructivist principles. However, there is a large distance between the descriptions of the 
intelligence made by constructivist theories and the mechanisms that currently exist. > Problem • The constructivist 
conception of intelligence is very powerful for explaining how cognitive development takes place. However, until now, 
no computational model has successfully demonstrated the underlying mechanisms necessary to realize it. In other 
words, the artificial intelligence (AI) community has not been able to give rise to a system that convincingly imple-
ments the principles of intelligence as postulated by constructivism, and that is also capable of dealing with complex 
environments. > Results • This paper presents the constructivist anticipatory learning mechanism (CALM), an agent 
learning mechanism based on the constructivist approach of AI. It is designed to deal dynamically and interactively 
with environments that are at the same time partially deterministic and partially observable. CALM can model the 
regularities experienced in the interaction with the environment, on the sensorimotor level as well, as by constructing 
abstract or high-level representational concepts. The created model provides the knowledge necessary to generate 
the agent behavior. The paper also presents the coupled agent environment system (CAES) meta-architecture, which 
defines a conception of an autonomous agent, situated in the environment, embodied and intrinsically motivated. 
> Implications  • The paper can be seen as a step towards a computational implementation of constructivist prin-
ciples, on the one hand suggesting a further perspective of this refreshing movement on the AI field (which is still too 
steeped in a behaviorist influence and dominated by probabilistic models and narrow applied approaches), and on 
the other hand bringing some abstract descriptions of the cognitive process into a more concrete dimension, in the 
form of algorithms. > Constructivist content • The connection of this paper with constructivism is the proposal of a 
computational and formally described mechanism that implements important aspects of the subjective process of 
knowledge construction based on key ideas proposed by constructivist theories. > Key words • Factored partially ob-
servable Markov decision process (FPOMDP), computational constructivist learning mechanisms, anticipatory learn-
ing, model-based learning.

Introduction

« 1 »  The constructivist approach to 
artificial intelligence can be defined as the 
set of works on this science directly or in-
directly inspired by ideas coming from the 
constructivist conception of intelligence. 
This conception was essentially defined by 
Jean Piaget (1954) and gave raise to an im-
portant school of thought that influenced 
many scientific fields from the second half 
of the twentieth century onward. The first 
important AI system based on constructivist 
concepts appeared much later, presented by 

Gary Drescher (1991), but even if his model 
had some theoretical impact on the field of 
AI, it could never be used to solve significant 
applied problems. Since then, year after year, 
new papers have been published that at-
tempt to point out a way to implement such 
a strong mechanism (Guerin 2011). How-
ever, the constructivist approach has never 
thrilled most researchers in the AI commu-
nity, staying in that uncomfortable position 
between the promise of true intelligence and 
the lack of impressive results.

« 2 »  In this article, we present the con-
structivist anticipatory learning mechanism 

(CALM), an agent learning mechanism 
based on the constructivist approach of AI. 
CALM is designed to discover regularities 
in partially deterministic environments: 
it identifies the deterministic transforma-
tions present in non-deterministic situa-
tions. The mechanism operates incremen-
tally: the agent learns at the same time as 
it needs to interact with the environment. 
CALM can also deal with partially observ-
able environments: it is able to infer the 
existence of hidden or abstract properties, 
integrating them in its anticipatory cycle. 
The constructed anticipatory model can 
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be used by the agent to optimize its action 
policy, improving its performance on its 
own activities and adapting its behavior to 
the experienced reality according to self-
determined goals or internal motivations.

« 3 »  The elementary piece of knowl-
edge used by the mechanism is the schema, 
an anticipatory structure that can be de-
scribed in the form of a conjunctive im-
plication: context ∧ action → expectation. It 
represents the prediction of experiencing 
some transformation when a given action 
is carried out in a given context.

« 4 »  CALM is the cognitive engine 
embedded in an artificial agent. In order to 
complete the description of our construc-
tivist computational model, in this article 
we present the coupled agent environment 
system (CAES), a meta-architecture that 
defines the agent as an autonomous entity, 
situated in the environment, embodied and 
intrinsically motivated.

« 5 »  Our work aims to constitute one 
more brick in the effort to bridge the gap 
between the insightful but too abstract 
descriptions of intelligence made by con-
structivist theories and robust artificial in-
telligence mechanisms able to implement 
them.

Sensorimotor to symbolic

« 6 »  The gradual development of a 
symbolic intelligence over a sensorimo-
tor intelligence is an essential aspect of 
explaining how human beings can render 
intelligible their experiences, giving some 
sense to the world, and learning to interact 
with it (Piaget 1954). The challenge is the 
same for a situated artificial agent (such as 
a robot), who needs to learn incrementally 
the regularities observed throughout its in-
teraction with the environment where it is 
inserted.

« 7 »  The experienced reality is some-
thing subjective and should not be con-
fused with an external, objective, ontologi-
cal universe, which is assumed to be on the 
other end of the interaction interface. The 
world as it is cannot be apprehended out-
side the domain of experience; whatever 
may lie beyond sensorial perception is in-
accessible (Glasersfeld 1974, 1979). Any 
representation of the outside reality will 

be a model necessarily based on regulari-
ties extracted from subjective sequences of 
observations and actions, and not from the 
structure of that reality, which remains un-
known in its essence.

« 8 »  Moreover, in complex environ-
ments, special “macroscopic” properties 
emerge from the functional interactions 
of “microscopic” elements, and such emer-
gent characteristics are not defined in any 
of the sub-parts that generate them (Gold-
stein 1999). The salient phenomena in this 
kind of environment tend to be related to 
high-level objects and processes (Thornton 
2003). In this case, if we suppose the exist-
ence of a complex universe out there, it is 
plainly inadequate to represent the experi-
ence only in terms of primitive sensorimo-
tor elements (Drescher 1991).

« 9 »  Considering these conditions, an 
intelligent agent (human or artificial) must 
have the capacity to overcome the limits of 
pure sensorial perceptions, organizing the 
universe in terms of more abstract con-
cepts. The agent needs to be able to detect 
high-level regularities in the dynamics of 
the environment, but this is not possible 
if the agent is stuck in a rigid representa-
tional vocabulary.1 In a constructivist ap-
proach, cognitive development must be a 
process of gradual complexification of the 
intelligence, where more abstract struc-
tures (symbolic) are built from simpler 
sensorimotor interactions, in a way that 
harmonizes the lived experiences with the 
constructed model.

« 10 »  From the flat, unstructured, con-
tinuous flow of perceptions resulting from 
the situation of the agent in a complex uni-
verse, intelligence needs to build some or-
ganization. While the constructed internal 
knowledge might reflect an external reality 
to some degree, from the agent’s perspec-
tive this remains undecidable. Importantly, 
though, intelligence progressively organ-
izes knowledge in increasingly abstract 
structures, enriching the agent’s under-
standing of its own experiences.

1 |  The agent’s representational vocabulary 
is the set of elements it can manipulate to create 
knowledge.

Situativity, embodiment 
and intrinsic motivation
« 11 »  A given universe (natural or 

computationally simulated) is a whole sys-
tem that can be analytically separated into 
two different entities: an agent and an envi-
ronment. These two entities can be defined 
as mutually dependent dynamical systems,2 
partially open to each other, and continual-
ly deforming their trajectories (Beer 1995, 
2004; Barandiaran & Moreno 2006; Ashby 
1952).

« 12 »  A situated agent (Wilson & Clark 
2008) is an entity embedded in an environ-
ment. Due to the fact that the agent is only 
one among many forces that generate the 
environment dynamics, it is only partially 
capable of transforming the environment 
by its actions. In the same way, due to the 
fact that the agent’s sensorial perception is 
limited in some manner, the environment 
becomes only partially observable and the 
agent can find itself unable to distinguish 
between differing states of the world (Such-
man 1987). The same situation can be per-
ceived in different forms, and different situ-
ations can have a similar appearance. This 
ambiguity in the perception of states, also 
referred to as perceptual aliasing, has seri-
ous effects on the ability of most learning 
algorithms to construct consistent knowl-
edge and stable policies (Crook & Hayes 
2003).

« 13 »  The agent is embodied (Ander-
son 2003; Ziemke 2003): it presents inter-
nal states and metabolisms, elements that 
belong neither to the mind nor to the en-
vironment. This characteristic allows the 
agent to have intrinsic motivations: evalu-
ative signals related to the internal state of 
the agent, and not to external environmen-
tal states to be reached.

2 |  A dynamical system consists of an ab-
stract state space evolving over time according 
to a rule that specifies the immediate future state 
given the current state.
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Coupled agent–environment 
system
« 14 »  CAES is a meta-architecture 

proposed in this article to define a coupled 
agent-environment system, respecting the 
notions described in the precedent section. 
The universe (U) is represented as a global 
system U = {A, E}, where an agent (A) in-
teracts with an environment (E). The agent 
A = {B, M} is formed by two subsystems: 
body (B) and mind (M). The body is the in-
termediary between mind and environment. 
Mind, body and environment can be each 
described by an abstract state space and an 
evolution function: E = {XE, fE}, B = {XB, fB}, 
M = {XM, fM}.

« 15 »  These entities are interrelated 
dynamical systems. The environment con-
tinually imposes a situation (s) on the agent, 
which responds through an actuation (a). 
The situation is given in function of the state 
of the environment, s = fs(xE), and the actua-
tion is defined according to the state of the 
body, a = fa(xB). In the same way, the mind 
is continually receiving a perception signal 
coming from the body in function of its 
state, p = fp(xB), and sending to the body a 
control signal (c), decided in function of the 
mind’s own internal state, c = fc(xM). Part of 
the situation can be perceived by the mind 
through external sensors present in the body, 
while the mind can also control part of the 
actuation over the environment through ex-
ternal effectors also present in the body. The 
interaction of the mind with the body takes 
place through internal sensors and effectors. 
The mind does not know a priori what sen-
sors and effectors are internal or external. 
From the point of view of the mind, both 
body and environment are in some way ex-
ternal, being part of an exteriority W = {B, 
E}, the world outside the mind. The com-
plete CAES meta-architecture is presented 
in Figure 1.

« 16 »  This configuration generates a 
kind of circularity, and defines each entity as 
a partially open dynamical system. The envi-
ronment evolves in function of its own cur-
rent state, but influenced also by the actua-
tion coming from the agent, xE' = fE(xE, a). 
Similarly, the next body state is defined in 
function of the actual body state, but is influ-
enced by both the situation coming from the 
environment and the control signal coming 

from the mind, xB' = fB(xB, s, c). It is the same 
for the mind, which continually changes its 
internal state (whatever that means) influ-
enced by its perceptions, xM' = fM(xM , p).

« 17 »  CAES is a meta-architecture 
because it does not define of what or how 
each system is made. Moreover, it does not 
constraint these systems as stationary.3 The 
environment as well as the body can change 
its respective set of rules and variables over 
time. The same applies for the mind, which 
needs to be non-stationary if we want to 
have some kind of learning or mental devel-
opment. Such learning ability can be defined 
as a function M' = fμ(M, xM, p) that changes 
the mind’s own space of states (creating 
new concepts or representational signs) and 
rules (changing the policy of actions that is 
responsible for determining the control sig-
nal) based on the experience (memories and 
immediate perceptions).

Representing ontological 
and experiential reality
« 18 »  In our understanding, a con-

structivist machine learning mechanism 
must be made using model-based4 methods. 
The agent constructs knowledge in order 
to understand its experience of interaction 
with the environment. Computationally, 
the learning problem can be divided into 
two parts: (a) the construction of the mod-

3 |  A dynamical system is stationary if the 
rules that define its evolution do not change over 
time.

4 |  In opposition to model-free methods, 
where an agent can dynamically optimize its be-
havior only based on the immediate experience.

el, and, based on it, (b) the definition of a 
policy of actions, which defines the agent’s 
subsequent behavior.

« 19 »  When, for simplicity, we say that 
the agent constructs a model of the world, we 
need to specify that in fact it is the agent’s 
mind that constructs a model of an exteri-
ority (the world outside the mind) to which 
the mind has access only through a limited 
sensorial interface. A model of the world is 
not a reproduction of the structure of an on-
tological reality, but is a model of the agent’s 
experiential history.5 It is a model (and not a 
memory) because it does more than remem-
ber the past interactions: the model aims to 
generalize a complete system to represent 
the whole external world based on the finite 
set of experiences.

« 20 »  Frequently in the machine learn-
ing literature, the relation between agent 
and environment is not clearly defined. Tra-
ditionally, computer scientists do not make 
an explicit difference between the world as 
it is ontologically and the world represent-
ed by the agent at the limits of its sensorial 
interface and history of interactions. They 
conceive the agent as acting and perceiving 
directly on the “real world,” and this can give 
rise to confusing architectures, where situ-
ativity problems disappear by omission.

« 21 »  We define the learning problem in 
the following terms: we cannot know what 
any “external reality” (the world outside the 
mind) consists of, but we suppose that it can 
be represented (for analytical purposes) as a 
factored and partially observable Markovian 
decision process (FPOMDP), where actions 

5 |  The experiential history is the sequence of 
interactions (perceptions and actions) realized by 
the mind.

U
A

W

M B E
p

c

s

a

Figure 1: Body between mind and environment.
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and observations correspond to the control 
and perception signals in the CAES archi-
tecture. The world model constructed by 
the mind can be represented by a factored 
Markovian decision process (FMDP) that 
constitutes a kind of morphism of the first 
one, constrained by the sensorial interface 
limitations, as well as by the incompleteness 
of the experience, but possibly enriched 
with abstract variables created in order to 
make the system more structured and intel-
ligible.

« 22 »  In simulated systems, where both 
agent and environment are programs run-
ning in a computer, an observer can have 
access to the whole structure (mind, body, 
environment and their interfaces of interac-
tion). In this particular case, it is possible 
to analyze the factors that characterize the 
experiential relation with that given reality. 
The specificities of that relation, combined 
with the intellectual and cognitive capaci-
ties of the agent, will determine the difficul-
ty of learning a successful model,6 and con-
sequently the agent’s possibility to become 
adapted to the environment.

MDP framework

« 23 »  Markovian decision processes 
(MDPs) and their extensions constitute 
widely-used representations for modeling 
decision-making and planning problems 
(Feinberg & Shwartz 2002). An MDP is 
typically represented as a discrete stochastic 
finite state machine (Puterman 1994; Rivest 
& Schapire 1994): at each time step the ma-
chine is in some state s; the agent interacts 
with the process by choosing some action a 
to carry out; then the machine changes into 
a new state s' and gives the agent a corre-
sponding reward r; a given transition func-
tion δ defines the probabilities of the state 
change according to s and a. The flow of an 
MDP (the transition between states) de-
pends only on the system’s current state and 
on the action taken by the agent at the time. 
After acting, the agent receives an evalua-

6 |  A model can be considered successful if 
it allows the agent to make correct anticipations 
for future interactions; it is not an evaluation of 
the correspondence with ontological structures, 
which remain inaccessible.

tive reward signal (positive or negative), ac-
cording to the chosen actions or the realized 
state transition.

« 24 »  Solving an MDP means find-
ing the optimal (or near-optimal) policy of 
actions in order to maximize the rewards 
received by the agent over time. When the 
MDP parameters are completely known, in-
cluding the reward and the transition func-
tions, it can be mathematically solved by dy-
namic programming methods. When these 
functions are unknown, the MDP can be 
solved by reinforcement learning methods, 
designed to learn a policy of actions on-line, 
i.e., at the same time that the agent interacts 
with the system, by incrementally estimat-
ing the utility of state-actions pairs and then 
mapping situations to actions (Sutton & 
Barto 1998).

« 25 »  However, the MDP supposes that 
the agent has complete information about 
the state of the environment. A partially ob-
servable MDP (POMDP) (Singh et al. 2003; 
Cassandra, Kaelbling & Littman 1998) is an 
extension of the model that includes a set of 
observations that is different from the set of 
states. The underlying system state s cannot 
be directly perceived by the agent, which has 
access only to an observation o given by an 
observation function g. We can represent a 
larger set of problems using POMDPs rather 
than MDPs, but the methods for solving 
them are computationally even more expen-
sive (Hauskrecht 2000).

« 26 »  For a situated agent, this kind of 
representation becomes inadequate because 
it requires the complete enumeration of the 
states, and the number of states increases 
exponentially according to the number of 
agent sensors (Bellman 1957). This is the 
main bottleneck in the use of MDPs or 
POMDPs: representing complex universes 
entails an exponential increase in the state 
space, and the problem quickly becomes in-
tractable.

Factoring the MDP states
« 27 »  When a large MDP has a signifi-

cant internal structure, it can be modeled 
compactly; the factorization of states is an 
approach to exploit this characteristic (Bou-
tilier, Dearden & Goldszmidt 2000; Jonsson 
& Barto 2005; Degris, Sigaud & Wuillemin 
2006; Shani et al. 2008). In the factored rep-
resentation, a state is implicitly described 

by an assignment to some set of state vari-
ables. Thus, a complete explicit state space 
enumeration is avoided, and the system can 
be described referring directly to its vari-
ables. The factorization of states enables the 
system to be represented in a generalized 
and compact way, even if the correspond-
ing MDP is exponentially large (Guestrin et 
al. 2003). When the structure of the FMDP 
is completely known, it is possible to find 
good policies in an efficient way (Guestrin 
et al. 2003). However, the research con-
cerning the discovery of the structure of 
an underlying system from incomplete ob-
servation is still incipient (Degris & Sigaud 
2010).

« 28 »  An FPOMDP is an FMDP that 
can represent partial observation (Guestrin, 
Koller & Parr 2001; Hansen & Feng 2000; 
Poupart & Boutilier 2004; Shani, Brafman & 
Shimony 2005; Sim et al. 2008). An FPOM-
DP can be formally defined as a 4-tuple {X, 
C, R, T}. The state space is factored and rep-
resented by a finite non-empty set of system 
properties or variables X = {X1, X2, … Xn}, 
which is divided into two subsets, X = P ∪ H, 
where the subset P contains the observ-
able properties (those that can be accessed 
through the agent’s sensory perception), 
and the subset H contains the hidden or 
non-observable properties. Each property 
Xi is associated to a specified domain, which 
defines the values the property can assume; 
C = {C1, C2, … Cm} represents the controlla-
ble variables, composing the agent actions; 
R = {R1, R2, … Rk} is a set of (factored) re-
ward functions, in the form Ri: Pi → IR; and 
T = {T1, T2, … Tn} is a set of transformation 
functions, such as Ti : X × C → Xi , defining 
the system dynamics. Each transformation 
function can be represented by a dynamic 
Bayesian network, which is an acyclic, ori-
ented, two-layer graph. The first layer nodes 
represent the environment state at time t, 
and the second layer nodes represent the 
next state, at t + 1 (Boutilier, Dearden & 
Goldszmidt 2000). A policy π is a mapping 
X → C where π(x) defines the action to be 
taken in x. The agent must learn a policy that 
optimizes the average rewards received over 
time, but it never sees the ontological state x, 
only a perceptive situation p.

« 29 »  When the agent is immersed in 
a system represented as an FPOMDP, the 
complete task for its anticipatory learning 
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mechanism is both to create a predictive 
model of the world dynamics (i.e., induc-
ing the underlying transformation function 
of the system) and to define an optimal (or 
sufficiently good) policy of actions in order 
to establish a behavioral strategy. A good 
overview of the use of this representation 
in AI, referring to algorithms designed to 
learn and solve FMDPs and FPOMDPs, can 
be found in (Sigaud et al. 2009; Degris & Si-
gaud 2010).

Relation between 
ontological and experiential 
reality
« 30 »  We distinguish four main factors 

that shape the relation between the agent’s 
mind and the external world: observability, 
complexity, determinism and controllability.

« 31 »  The observability factor (w) indi-
cates the degree of access that the agent has 
to the environment state through its senso-
rial perception. We can imagine this meas-
ure as being equivalent to the proportion of 
observable variables in the whole system in 
relation to the total number of variables. If 
the state of the environment can be repre-
sented by n bits of information and the state 
of the sensors affected by that world state 
can be represented by m bits, the observabil-
ity factor w is the proportion of m over n, 
where 0 ≤ w ≤ 1. Considering an FPOMDP 
composed of binary variables, m = |P| and 
n = |X|.

« 32 »  If w = 1, the environment is said 
to be completely observable, which means 
that the agent has sensors to observe di-
rectly all the properties of the environment. 
In this case there is no perceptual confu-

sion, and the agent always knows the cur-
rent state. When w < 1, the environment is 
said partially observable. The lower w is, 
the higher the proportion of hidden dimen-
sions of the environment is in relation to 
the agent’s perception. When w is close to 
0, the agent is no longer able to identify the 
current situation only in terms of its per-
ception.

« 33 »  The complexity factor (j) is relat-
ed to the rules that define the world dynam-
ics, indicating how intelligible the environ-
ment transformations can be for the agent. 
The complexity can be measured as the 
average amount of information needed to 
define the evolution of one bit in the world 
state. In a highly structured world, it is pos-
sible to model precise causes for each trans-
formation; in other words, the evolution of 
one variable of the system depends on only 
a few other relevant variables. In contrast, 
in an unstructured world there is too much 
interdependence between the variables to 
determine the evolution of the system.

« 34 »  The difficulty for the agent in 
constructing a model is related to the com-
plexity of the world dynamics. A less com-
plex world can be more easily structured 
by intelligence. A low level of complexity 
means that the information about the dy-
namics of the environment is concentrated 
in the variables. It indicates the average 
amount of relevant variables necessary to 
describe each transformation. When j is 
small, the rules that govern the dynamics of 
the whole system have few parameters. It is 
a kind of thermometer indicating how easy 
is to model causality between events. In 
contrast, a higher level of complexity (rising 
to n) indicates that the information about 
the dynamics is sparsely distributed over 

all the set of variables, and in this case the 
agent needs to describe the transformations 
in function of almost all the variables.

« 35 »  The determinism factor (∂) is 
equivalent to the proportion of determinis-
tic transformations in relation to the total 
number of transformations. In the com-
pletely non-deterministic case (∂ = 0), all 
transformation functions (of every prop-
erty) need to be represented in terms of 
probabilities. On the other hand, in the 
completely deterministic case (∂ = 1), every 
transformation is deterministic. An envi-
ronment is said partially deterministic if it 
is situated between these two extremities 
(0 < ∂ < 1) presenting both deterministic 
and stochastic transformations.

« 36 »  Observability and determinism 
are dependent factors. Partially observable 
environments can present some determi-
nant variables to a good world model that 
cannot be directly perceived by the agent 
sensors. Such environments can appear ar-
bitrarily complex and non-deterministic on 
the surface, but they can actually be deter-
ministic and predictable with respect to un-
observable underlying elements (Holmes & 
Isbell 2006). In other words, an ontological-
ly deterministic world can be experienced 
as non-deterministic. The more an agent 
has sensors to perceive complex elements 
and phenomena, the more the environment 
will appear deterministic to it.

« 37 »  Finally, the controllability fac-
tor (k) represents the proportion of vari-
ables whose dynamics are influenced by the 
agent’s actions, within the total number of 
variables in the system. The controllability 
factor affects the difficulty of learning be-
cause it determines the capacity of the agent 
to experiment actively.
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CALM

« 38 »  The constructivist anticipatory 
learning mechanism (CALM), detailed in 
(Perotto 2010), is a mechanism that enables 
an agent to learn the structure of an un-
known environment in which it is situated 
through observation and experimentation, 
creating an anticipatory model of the world. 
CALM operates the learning process in an 
active and incremental way. There is no sepa-
rated previous training time: the agent has a 
single uninterrupted interactive experience 
within the system; it needs to perform and 
learn at the same time.

« 39 »  The task becomes harder because 
the environment is only partially observable 
and partially deterministic, from the point of 
view of the agent, constituting an FPOMDP. 
In this case, the agent has perceptive infor-
mation from a subset of sensory variables, 
but the system dynamics also depends on an-
other subset of hidden variables. To be able 
to create a consistent world model, the agent 
needs, beyond discovering the regularities 
of the phenomena, also to create abstract 
variables in order to take into account non-
observable conditions that are necessary to 
understand the system’s evolution. In other 
words, learning a model of the world is more 
than describing the environment dynam-
ics (the rules that can explain and anticipate 
the observed transformations), it is also dis-
covering the existence of hidden properties 
(once they influence the evolution of the ob-
servable ones) and, finally, finding a way to 
deduce the values of these hidden properties.

« 40 »  The system as a whole is in fact an 
FPOMDP, but CALM is designed to discover 
the existence of non-observable properties, 
integrating them in its anticipatory model. 
In this way CALM can infer a structure to 
represent the dynamics of the system in 
the form of an FMDP (if the agent can suc-
cessfully discover and describe the hidden 
properties of the FPOMDP that it is dealing 
with, then the world becomes treatable as an 
FMDP because the hidden variables become 
known). There are some algorithms able to 
calculate efficiently the optimal (or near-
optimal) policy, when the FMDP is given 
(Guestrin et al. 2003). The algorithm to cal-
culate the policy of actions used by CALM is 
similar to that presented by Degris, Sigaud & 
Wuillemin (2006). However, the main chal-

lenge is to discover the structure of the prob-
lem based on the on-line observation.CALM 
does it using representations and strategies 
inspired by Drescher (1991).

Representing predictive knowledge 
by schemas
« 41 »  CALM tries to reconstruct, by ex-

perience, each system transformation func-
tion Ti, representing it by an anticipatory tree. 
Each anticipatory tree is composed of pieces 
of predictive knowledge called schemas; each 
schema represents some perceived regularity 
occurring in the environment by associating 
context (sensory and abstract), actions and 
expected results (anticipations).

« 42 »  One important strategy for deal-
ing with complexity is finding what is impor-
tant to anticipate. At the beginning, the only 
interesting variables are those associated to 
positive or negative affective values. Staying 
focused on these variables avoids wasting 
energy by creating models that anticipate 
other non-important variables. Gradually, 
the variables needed to anticipate the evo-
lution of some important variable (relation 
of causality) are also considered important, 
and the mechanism will seek to model their 
transformation function too.

« 43 »  A schema is composed of three 
vectors, in the form

Ξ = {context ∧ action → result}

denoting a kind of predictive rule. The con-
text vector has their elements linked both 
with the agent sensors and with the abstract 
variables. These abstract variables are rep-
resented by (mentally created) “synthetic 
elements” not linked to any sensor but refer-
ring to non-sensory properties of the uni-
verse, the existence of which is inferred by 
the mechanism. The action vector is linked 
with the agent effectors. Context and ac-
tion vectors can represent sets of equivalent 
situations or actions, by generalization. The 
result vector represents the value expected 
for some variable in the next time, after ex-
ecuting the given action in the given context. 
Each element vector can assume any value in 
a discrete interval defined by the respective 
variable domain.

« 44 »  Some elements in these vectors 
can take an “undefined value.” For example, 
an element linked with a binary sensor must 
have one of three values: true, false or unde-

fined (represented, respectively, by “1”, “0” 
and “#”). The undefined value generalizes the 
schema because it allows some properties to 
be ignored in order to represent a set of situa-
tions. The learning process happens through 
the refinement of the set of schemas. After 
each experienced situation, CALM updates 
a generalized episodic memory, then checks 
whether the result (context perceived at the 
instant following the action) conforms to the 
expected result of the activated schema. If 
the anticipation fails, the error between the 
result and the expectation serves as param-
eter to correct the model. The context and 
action vectors are gradually specialized by 
differentiation, adding each time a new rel-
evant feature to identify the situation class 
more precisely.

« 45 »  The use of undefined values 
makes it possible to construct an anticipatory 
tree. Each node in that tree is a schema, and 
relations of generalization and specialization 
guide its topology (quite similar to decision 
trees or discrimination trees). The root node 
represents the most generalized situation, 
in which the context and action vectors are 
completely undefined. Each level added to 
the tree represents the specialization of one 
element, where each branch replaces the 
undefined (generalized) value with one dif-
ferent possible defined value. This specializa-
tion occurs either in the context vector or in 
the action vector. In this way, CALM divides 
the state space according to the different 
expected results, grouping contexts and ac-
tions with their respective transformations. 
The tree evolves during the agent’s life, and 
is used by the agent, even if the tree is still 
under construction, to take its decisions, and 
in consequence, to define its behavior. The 
structure of a schema (the elementary piece 
of knowledge of an anticipatory tree) is pre-
sented in Figure 2.

« 46 »  The context in which the agent 
is at a given moment (perceived through its 
sensors) is applied in the tree, exciting all 
the schemas that have a compatible context 
vector. This process defines a set of excited 
schemas, each one suggesting a different ac-
tion to take in the given situation. CALM 
will choose one action to activate and will 
perform it through the agent’s effectors. The 
algorithm always chooses the compatible 
schema that has the most specific context, 
called decider schema, which is the leaf of a 
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differentiated branch. This decision is taken 
based on the calculated utility of each possi-
ble choice. There are two kinds of utility: the 
first estimates the discounted sum of rewards 
in the future following the policy, the second 
measures the exploration benefits. The util-
ity value used to take the decision depends 
on the circumstantial agent strategy (exploit-
ing or exploring). The mechanism also has a 
kind of generalized episodic memory, which 
represents (in a compact form) the specific 
and real situations experienced in the past, 
preserving the information necessary to cor-
rectly construct the tree.

Anticipatory tree construction
« 47 »  The learning process happens 

through the refinement of the set of sche-
mas. At each given moment in the time, 
the set of schemas of our agent, gradually 
constructed by the mechanism, is assumed 
to be coherent with all the past experience, 
describing in an organized way the regular 
phenomena observed during the interaction 
with the universe. To do so, the mechanism 
must have a memory of the past situations, 
but this memory can be neither too precise 
(because remembering all the experienced 
episodes would require a nonviable amount 
of space) nor too simple (because the lack 
of information would make it impossible to 
revise the model if there was contradiction 
with new disequilibrating observations). 
The implementation of a feasible episodic 
memory is not evident; it can be very expen-
sive if we try to stock too much information 
coming from the sensory flow. However, us-
ing some strong but well-chosen restrictions 
(such as limiting the dependency analysis 
between variables), and using a generalized 
and structured representation of the past ex-
perience, it becomes computationally viable.

« 48 »  After each experienced situation, 
CALM actualizes the generalized episodic 
memory and checks whether the result (con-
text perceived at the instant following the 
action) is in conformity to the expectation 
of the activated schema in the anticipatory 
tree. If the anticipation fails, the error be-
tween the result and the expectation serves 
as a parameter for correcting the model. In 
the anticipatory tree topology, the context 
and action vectors are taken together. This 
concatenated vector identifies the node 
in the tree. It can be expanded following a 

top-down strategy: the initial tree contains 
a unique schema, with completely general-
ized context and action, and it is gradually 
specialized by differentiation, adding new 
relevant features to identify more precisely 
the category of equivalent situations, which 
entails the creation of new branches in the 
tree where the context and action vectors 
are each time more defined. In well-struc-
tured universes, the shorter way is starting 
with an empty vector and searching for the 
probably small set of features relevant to 
distinguish the important situations, rather 
than starting with a full vector and having 
to waste energy eliminating a lot of useless 
elements. Selecting the right set of relevant 
features to represent some given concept is 
a well-known problem in AI, and the solu-
tion is not easy, even using approximated 
approaches. To do this, CALM adopts a 
forward greedy selection (Blum & Langley 
1997), using the data registered in the gen-
eralized episodic memory.

« 49 »  The expected result vector can 
be seen as a label in each decider schema, 
anticipating how the world changes when 
the schema is activated. Initially, all differ-
ent expectations are considered as different 
classes, and they are gradually generalized 
and integrated with others. The agent has 
two alternatives when the expectation fails. 
In a way that makes the knowledge compat-
ible with the experience, the first alternative 
is to try to divide the scope of the schema, 
creating new schemas with more specialized 
contexts. Sometimes this is not possible and 
then the schema’s expectation is reduced. In 
the expected result vector, “#” means that 

the element is not deterministically predict-
able. Another symbol can be used to rep-
resent some special situations, in order to 
reduce the number of schemas; this is the 
symbol “=”, used to indicate that the value 
of the expected element will not be changed.

« 50 »  Three basic methods compose 
the CALM learning function, namely: dif-
ferentiation, adjustment, and integration. 
Differentiation is a necessary mechanism 
because a schema responsible for a too 
general context cannot often make precise 
anticipations. If a general schema does not 
work well, the mechanism divides it into 
new schemas, differentiating them by some 
element of the context or action vector. In 
fact, the differentiation method takes an un-
stable decider schema and changes it into 
a two level sub-tree. The parent schema in 
this sub-tree preserves the context of the 
original schema. The children, which are the 
new decider schemas, have context vectors 
that are a little more specialized than those 
of their parent. They attribute a value to 
some undefined element, dividing the scope 
of the original schema. Each one of these 
new deciders engages itself in a part of the 
domain. In this way, the previous correct 
knowledge remains preserved, distributed 
in the new schemas, and the discordant situ-
ation is isolated and treated only in its spe-
cific context. Differentiation is the method 
responsible for making the anticipatory tree 
expand. Each level of the tree represents the 
introduction of some new constraint. The 
algorithm needs to choose what will be the 
differentiator element, which could be from 
either the context vector or the action vec-

Context
(hidden and 
observable)

Action
(controlable variables)

Expectation
(some hidden 

or observable element)

h1 h2 p1 p2 p3 c1 

e

Figure 2: The anticipatory tree. Each node is a schema composed of three vectors: context, ac-
tion and expected result; the leaf nodes are decider schemas.
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tor. This differentiator needs to separate the 
situation responsible for the disequilibrium 
from the others, and the algorithm chooses 
it by calculating the information gain, and 
considering a limited (parametrized) range 
of interdependencies between variables. Fig-
ure 3 illustrates the differentiation process.

« 51 »  When some schema fails and it 
is not possible to differentiate it in any way, 
then CALM executes the adjustment meth-
od. This method reduces the expectations 
of an unstable decider schema in order to 
make it reliable again. The algorithm simply 
compares the activated schema’s expectation 
and the real result perceived by the agent 
after the application of the schema, setting 
the incompatible expectation elements to 
the undefined value (“#”). The adjustment 
method changes the schema’s expectation 
(and consequently the anticipation predict-
ed by the schema). Figure 4 illustrates this.

« 52 »  In this way, the schema expecta-
tion can change (and consequently the class 
of the situation represented by the schema), 
and the tree maintenance mechanism needs 
to be able to reorganize the tree when this 
change occurs. Therefore, successive adjust-
ments in the expectations of various sche-
mas can reveal unnecessary differentiations. 
When CALM finds a group of schemas with 
similar expectations for approaching differ-
ent contexts, the integration method comes 
into action, trying to join these schemas by 
searching for some unnecessary common 
differentiator element and eliminating it. 
The method operates as shown in Figure 5.

Dealing with the unobservable
« 53 »  When CALM reduces the expec-

tation of a given schema by adjustment, it 
assumes that there is no deterministic regu-
larity following the represented situation in 
relation to these incoherent elements, and 
that the related transformation is unpredict-
able. However, sometimes a prediction error 
can be explained by considering the exist-
ence of some abstract or hidden property 
in the environment, which could be useful 
to differentiate an ambiguous situation but 
which is not directly perceived by the agent 
sensors. So, before adjusting, CALM as-
sumes the existence of a non-sensory prop-
erty in the environment, which will be rep-
resented as a synthetic element. When a new 
synthetic element is created, it is included as 

(a)

(b)

(c)

(d)

(e)
1 0 0 1 0 1

# 0 0 # # 1

# 0 0 # # 1

# 0 0 # # 1

0 0 0 # # 1 1 0 0 1 0 1

0
0 0 0 # # 1

0

1 0 0 # # 1

1

1

Figure 3: Differentiation method example: (a) a real experimented situation (with five variables) 
and executed action (one variable); (b) activated schema (with compatible context, action, 
and expectation); (c) associated episodic memory (representation of real situations where the 
scheme has been activated, in this case representing no interdependencies between variables); 
(d) real observed result, after the execution of the action; (e) sub-tree generated by differentia-
tion in order to compensate the divergence observed between expectation and result.

(d)

(a)

(b)

(c)

(e)1 0 0 1 0 1

1 0 0 1 0 1

1 0 0 1 0 1

0

1 0 0 1 0 1

1 0 0 1 0 1

#

1

Figure 4: Adjustment method example: (a) a real experimented situation and action; (b) acti-
vated schema; (c) associated episodic memory; (d) real observed result; (e) schema expectation 
reduction after adjustment.

(b)(a)

# 0 0 # # 1

# 0 0 # # 1

# 0 0 # # 10 0 0 # # 1 1 0 0 1 0 1

0

0 0 0 # # 1

0

1 0 0 # # 1

1

Figure 5: Integration method: (a) sub-tree after an adjustment; (b) an integrated schema 
substitutes the sub-tree.

(a)

(b)

(c)

(d)

(e)
1 0 0 1 0 1

1 0 0 1 0 1

1 0 0 1 0 1#

1 0 0 1 0 1

1 0 0 1 0 1 1 0 0 1 0 1

0
0 0 0 1 0 1

0

1 0 0 1 0 1

1

1

Figure 6: Synthetic element creation method: (e) incremented context and expectation 
vectors, and differentiation using a synthetic element.
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a new term in the context and expectation 
vectors of the schemas. The use of synthetic 
elements assumes the existence of some-
thing beyond the sensory perception, which 
can be useful to explain non-equilibrated 
situations. They have the function of ampli-
fying the differentiation possibilities.

« 54 »  In this way, when dealing with 
partially observable environments, CALM 
has two additional challenges: (a) inferring 
the existence of unobservable properties, 
which it will represent by synthetic ele-
ments, and (b) including these new elements 
into its predictive model. A good strategy 
for doing this is to look at the historical in-
formation.

« 55 »  CALM introduces a method 
called abstract differentiation. When a 
schema fails in its prediction, and when it 
is not possible to differentiate it by the cur-
rent set of considered properties, then a 
new Boolean synthetic element is created, 
enlarging the context and expectation vec-
tors. Immediately, this element is used to 
differentiate the incoherent situation from 
the others. The method attributes arbitrary 
values to this element in each differentiated 
schema. These values represent the presence 
or absence of some non-observable condi-
tion, necessary to determine the correct pre-
diction in the given situation. The method 
is illustrated in Figure 6, where the new ele-
ments are represented by card suits.

« 56 »  Once a synthetic element is cre-
ated, it can be used in subsequent differen-
tiations. A new synthetic element will be 
created only if the existing ones are already 
saturated. To avoid the problem of creat-
ing infinite new synthetic elements, CALM 
can do this only up to a determined limit, 
after which it considers that the problematic 
anticipation is not deterministically pre-
dictable, undefining the expectation in the 
related schemas by adjustment. Figure 7 il-
lustrates the idea behind synthetic element 
creation.

« 57 »  The synthetic element is not as-
sociated to any sensory perception. Con-
sequently, its value cannot be observed. 
This fact can place the agent in ambiguous 
situations, where it does not know whether 
some relevant but non-observable condition 
(represented by this element) is present or 
absent. Initially, the value of a synthetic ele-
ment is verified a posteriori (i.e., after the ex-

ecution of the action in an ambiguous situ-
ation). Once the action is executed and the 
following result is verified, then the agent 
can rewind and deduce the situation really 
faced in the past instant (disambiguated). 
Discovering the value of a synthetic element 
after the circumstance where this informa-
tion was needed can seem useless, but in fact 
this delayed deduction gives information to 
another method called abstract anticipation. 
If the non-observable property represented 
by this synthetic element has a regular dy-
namics, then the mechanism can propagate 
the deduced value back to the schema acti-
vated in the immediately previous instant. 
The deduced synthetic element value will be 
included as a new anticipation in the previ-

ous activated schema. Figure  8 shows how 
this new element can be included in the pre-
dictive model.

« 58 »  For example (complementing 
Figure 8), in time t1 CALM activates a sche-
ma X1 = {#1 ∧ c → #0}, where the context and 
expectation are composed of two elements 
(the first one synthetic and the second one 
perceptive) and one action. Suppose that the 
schema succeeds and, as predicted, the next 
observation is “0”. The problem is that the 
next situation “#0” is ambiguous because it 
excites both the schemas, X2 = {♦0 ∧ c → #0} 
and X3 = {♣0 ∧ c → #1}. At this time, the 
mechanism cannot know the value of the 
synthetic element, crucial to determining 
the real situation. Suppose that, anyway, the 

(a) 0 c 0 c 1

(b) 0 c

1

0

t1 t2

50%

50%

100% 100%

t3

(c) 0 c 0 c 1

 p  h  p  h 

c

0

c

1

c

Figure 7: Discovering the existence of non-observable properties in: (a) a real experienced 
sequence; (b) what CALM does not do (the attribution of a probability); (c) the creation of a 
synthetic element in order to explain the observed difference

(a)

(b)

t1 t2 t3 t4

100% 100%
0 c 0 c

100%
1 c 1

0 c 0 c1 c 1

Figure 8: Predicting the dynamics of a non-observable property in: (a) a real experienced se-
quence; (b) the use of a synthetic element to explain the logic behind the observed transfor-
mations.
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mechanism decides to execute the action “c” 
in time t2, and this is followed by the sen-
sory perception “0” in t3. Only now, in t3, 
the agent can deduce that the situation really 
dealt with in t2 was “♦0”, and it can include 
this information in the schema activated in 
t0, in the form X1 = {#1 ∧ c → ♦0}.

Experimental results

« 59 »  To exemplify the functioning of 
the proposed method, we will use the hyper-
flip problem, and extension of the problem 
used by Satinder Singh et al. (2003) and 
Michael Holmes & Charles Isbell (2006). 
It consists of an agent who lives in a two-
state universe. It has 3 actions (l, r, u) and 2 
perceptions (0, 1). The agent does not have 
any direct perception of the underlying cur-
rent state. It sees “1” when the state changes 
horizontally, and “0” otherwise. Action “u” 
changes the state vertically, action “l” causes 
the deterministic transition to the left state, 

and action “r” causes the deterministic tran-
sition to the right state. The flip problem is 
showed as a state machine in Figure 9.

« 60 »  CALM is able to solve this prob-
lem. First, the mechanism tries to predict 
the next observation in function of its action 
and current observation. However, it quick-
ly discovers that the perceptive observation 
is not useful to the model, and that there 
is insufficient information to make cor-
rect anticipations. So, it creates a new syn-
thetic element that will be able to represent 
the underlying left (♣) and right (♦) states. 
Figure 10 shows the final solution. It is in-
teresting to note that the constructed world 
model (with its 3 variables) is not a copy of 
the ontological structure of the problem (a 
machine with 4 states).

« 61 »  In order to test the robustness of 
the mechanism, a hundred new observable 
variables have been inserted in the hyper-
flip problem for a second scenario. These 
new variables present random transforma-
tion functions and do not influence the evo-
lution of the original observation. The result 
is that the mechanism is not affected in its 
capacity to solve the problem (it finds the 
same solution as that previously indicated). 
The time of learning increases in a linear or-
der with the addition of irrelevant variables.

Related work

« 62 »  CALM is an original mechanism 
that enables an agent to create incrementally 
a model of an experience during the course 
of its interaction with the universe. The 
pioneer work on constructivist AI was pre-

sented by Drescher (1991). He proposed the 
first constructivist agent architecture, which 
learns a world model by an exhaustive statis-
tical analysis of the correlation between all 
the context elements observed before each 
action, combined with all resulting trans-
formations. Drescher has also suggested the 
need to discover hidden properties by creat-
ing “synthetic items.”

« 63 »  The schema mechanism repre-
sents a strongly coherent model. However, 
there are no theoretical guarantees of con-
vergence. Another restriction is the compu-
tational cost of the kind of operations used 
in the algorithm. The need for space and 
time resources increases exponentially with 
the problem size. Nevertheless, some other 
researchers have presented alternative mod-
els inspired by Drescher, such as Yavuz & 
Davenport (1997), Morrison, Oates & King 
(2001), Chaput (2004), and Holmes & Isbell 
(2005), always based on the search for statis-
tically observed regularities.

« 64 »  CALM differs from these previ-
ous works because we limit the problem to 
the discovery of deterministic regularities 
(even in partially deterministic environ-
ments). In this way, we can implement direct 
induction methods in the agent learning 
mechanism. This approach presents a low 
computational cost, and it allows the agent 
to learn incrementally and find high-level 
regularities. For that, we have been inspired 
by Holmes & Isbell (2006), who used the 
notion of the state signature as a historical 
identifier of the states to develop the idea of 
learning anticipations through the analysis 
of relevant pieces of history.

« 65 »  With the emergence of the fac-
tored MDP model, some important works 
have been realized to create algorithms 
designed to discover the structure of the 
system (Degris, Sigaud & Wuillemin 2006; 
Degris & Sigaud 2010; Strehl, Diuk & Litt-
man 2007; Jonsson & Barto 2005). However 
CALM, as far as we know, is the only one to 
merge the induction of synthetic elements to 
represent the non-observable variables in an 
FPOMDP.

« 66 »  Another originality of CALM is 
the use, in such learning problems, of a gen-
eralized episodic memory associated to the 
search for important variables (related to 
affective values or relevant to anticipate the 
evolution of other important variables).

r: see 1

l: see 1

r: see 1

l: see 1

u: see 0 u: see 0

Figure 9: The hyper-flip problem.
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Figure 10: Final schematic tree for solving the flip problem. The vector represents synthetic 
elements (h), perceptible elements (p) and actions (c). The decider schemas show the expecta-
tions.
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Conclusion

« 67 »  The CALM mechanism can pro-
vide autonomous adaptive capabilities to an 
agent because it is able to construct knowl-
edge incrementally to represent the deter-
ministic regularities observed during its 
interaction with the environment, even in 
partially deterministic universes.

« 68 »  CALM is able to deal with par-
tially observable environments, detecting 
high-level regularities. The strategy is the 
induction and prediction of unobservable 
properties, represented by synthetic ele-
ments.

« 69 »  Synthetic elements enable the 
agent to step beyond the limit of instanta-
neous and sensorimotor regularities. In the 
agent’s mind, synthetic elements can repre-

sent three kinds of “unobservable things”: 
(a) hidden properties in partially observed 
worlds, or sub-environment identifiers in 
discrete non-stationary worlds; (b) markers 
to necessary steps in a sequence of actions, 
or to different possible agent points of view; 
and (c), abstract properties, which do not 
exist properly, but which are powerful and 
useful tools for the agent, enabling it to or-
ganize the universe into higher levels.

« 70 »  With these capabilities, CALM 
is able to step beyond sensorial perception, 
constructing more abstract terms to repre-
sent the universe and to “understand” its 
own reality in more complex levels. CALM 
can be very effective for constructing mod-
els in partially but highly deterministic 
(1 > ∂ ≫ 0) and partially but highly observ-
able (1 > w ≫ 0) environments, and when 

the transformation functions have well-
structured causal dependencies (0 < j ≪ n).

« 71 »  Currently, we are improving 
CALM to enable it to form action sequences 
by chaining schemas. It will allow the crea-
tion of composed actions and plans. The 
next research steps include: formally dem-
onstrating the mechanism’s robustness and 
correctness; making comparisons between 
CALM and related solutions proposed by 
other researchers; and analyzing the mecha-
nism’s performance when facing more com-
plex problems. Future works could include 
the extension of CALM to deal with non-de-
terministic regularities, noisy environments 
and continuous domains.

Received: 12 July 2013 
Accepted: 19 September 2013

To Bridge the Gap between 
Sensorimotor and Higher 
Levels, AI Will Need Help 
from Psychology
Frank Guerin
University of Aberdeen, UK 
f.guerin/at/abdn.ac.uk

> Upshot • Constructivist theory gives a 
nice high-level account of how knowl-
edge can be autonomously developed 
by an agent interacting with an environ-
ment, but it fails to detail the mecha-
nisms needed to bridge the gap between 
low levels of sensorimotor data and 
higher levels of cognition. AI workers 
are trying to bridge this gap, using task-

specific engineering approaches, with-
out any principled theory to guide them; 
they could use help from psychologists.

« 1 »  The formulation of the problem as 
it appears in the abstract of Filipo Perotto’s 
article packs in a lot of information that 
merits discussion:

“ The constructivist conception of intelligence is 
very powerful for explaining how cognitive devel-
opment takes place. However, until now, no com-
putational model has successfully demonstrated 
the underlying mechanisms necessary to realize 
it. In other words, the artificial intelligence (AI) 
community has not been able to give rise to a sys-
tem that convincingly implements the principles 
of intelligence as postulated by constructivism, 
and that is also capable of dealing with complex 
environments.”

« 2 »  This suggests that the psycholo-
gists have succeeded in explaining how cog-
nitive development takes place and that the 
AI community has failed in its job to imple-
ment these “principles of intelligence.” How-
ever, I would throw the problem back at the 
psychologists. I think that significant work 
is still needed at the level of theoretical psy-
chology before we have something close to a 
proper explanation of how cognitive devel-
opment takes place. Psychological explana-
tions are for the most part vague and woolly; 
they do not elucidate the mechanisms un-
derlying development (Jean Piaget’s theory 
being a good example). Furthermore, Pi-
aget’s theory is at times even at odds with 
experimental psychology. It may be many, 
many years before we have a suitably de-
tailed theory from the psychologists that is 
consistent with the evidence from experi-

Open Peer Commentaries
on Filipo Studzinski Perotto’s “Computational 
Constructivist Model”
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ments. Until that time, one could argue that 
the “principles of intelligence as postulated 
by constructivism” are implemented very 
well by existing AI systems. Gary Drescher, 
for example, did implement the basic princi-
ples of constructivism, but “it could never be 
used to solve significant applied problems,” 
because the techniques do not scale up to 
systems with large numbers of inputs and 
degrees of freedom. However, Piaget did not 
give us any idea of how to deal with these 
issues, so one could lay the blame on him.

« 3 »  To quote from the abstract again, 
“there is a large distance between the de-
scriptions of the intelligence made by con-
structivist theories and the mechanisms 
that currently exist.” If we consider Piaget’s 
theory, and Drescher’s system or the CALM 
system, I am not sure that there is such a 
large distance. Piaget’s descriptions of as-
similation and accommodation are so all 
encompassing and so lacking in detail that 
it seems to me that Drescher’s system or 
the CALM system constitute perfectly good 
implementations. Psychology tends to leave 
mechanisms very underspecified.

« 4 »  To quote again from the article’s 
abstract: “…and that is also capable of deal-
ing with complex environments.” Here is 
perhaps the essence of the problem. When 
you start building an actual AI system that 
has to interact with the world, you face a 
daunting task of dealing with a complex en-
vironment. It seems that AI is being saddled 
with the burden of not only implementing 
the high-level theory, but also making sure 
it can deal with complex environments. The 
“complex environments” problem needs to 
be thrown back at the psychologists. The 
history of AI has shown that a theory of 
cognition that works at a high abstract level 
but cannot account for the interface to the 
sensorimotor level is not much of a theory 
of cognition at all. The devil is in the detail. 
There are many writers who convincingly 
show how high-level cognition is very much 
grounded in our sensorimotor intelligence 
(e.g., Barsalou 2008; Byrne 2005; Bril, Roux 
& Dietrich 2005). Psychological theories 
tend to overlook the need for complex 
mechanisms to bridge the gap between the 
sensorimotor level and high-level cognition. 
Psychologists may need to become compu-
ter scientists to some extent, so that they 
have an appreciation of the computational 

problems involved and the need for them 
to describe mechanisms to account for how 
humans successfully solve these.

« 5 »  On the positive side, there are 
some works in cognitive science that are 
beginning to attempt to address the issue 
of providing some theoretical framework 
to account for how a sensorimotor level can 
connect with higher levels of cognition: for 
example, the multi-layered cognitive system 
of Bipin Indurkhya (1992, Chapter 5).

« 6 »  For the CALM system itself, I feel 
the article has all the correct ideas from a 
philosophical and psychological point of 
view, e.g., about the agent constructing its 
own symbolic structures and not having 
access to the “ontological reality.” However, 
if we are to evaluate it as a candidate for a 
“general artificial intelligence mechanism 
that learns like humans do” (first sentence 
of abstract), then it might suffer the same 
shortcomings as Drescher’s work, i.e., “it 
could never be used to solve significant ap-
plied problems.” For example, if the context 
were to be the visual input from two stereo 
cameras delivering a few million pixels in 24 
bit colour at thirty frames per second and the 
system is trying to predict the consequences 
of actions, in the complexity of an everyday 
setting, in this visual stream, it might not be 
feasible to use each bit of input as a CALM 
variable. One could, of course, propose 
to hook the CALM system up to a higher-
level abstracted version of the visual input, 
but then one runs into the issues of where 
to make the cut-off between what the core 
CALM system sees and what is the respon-
sibility of other abstraction mechanisms. If 
the cut-off is at the wrong place, then one 
runs into classical AI problems of (a) having 
a core cognition that makes unreasonable as-
sumptions about how accurately it can inter-
face with the world or (b) having a prespeci-
fied worldview imposed by the provided 
abstractions (see Brooks 1991 or Stoytchev 
2009 for problems with this). There does not 
seem to be any clear theory from psychol-
ogy to guide us on how to connect the sen-
sorimotor level with some higher levels. AI 
does have various different applied systems 
that successfully make a connection from 
high-level symbols to perception and action 
in complex settings: for example, robots that 
perform everyday tasks (Beetz et al. 2010). 
However, each applied AI system tends to be 

specialised and optimised for one particular 
task. None could claim to be a reasonable 
model of general human cognition, nor do 
they attempt to be. This is really a job for the 
psychologists.

Frank Guerin obtained his Ph.D. degree from Imperial 
College, London, in 2002. Since August 2003, he has 

been a Lecturer in Computing Science at the University 
of Aberdeen. He is interested in understanding the core 

of cognition in computational terms. He has focused 
on understanding infant cognitive development, 
as a first step to understanding later cognition.
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Environments Are Typically 
Continuous and Noisy
Martin V. Butz
University of Tübingen, Germany 
martin.butz/at/uni-tuebingen.de

> Upshot • The schema system present-
ed in the target article suffers from prob-
lems that had been acknowledged more 
than ten years ago. The main point is that 
our world is neither deterministic nor 
symbolic. Sensory as well as motor noise 
is ubiquitous in our environment. Sym-
bols do not exist a priori but need to be 
grounded within our continuous world. 
In conclusion, I suggest that research on 
schema-learning systems should tackle 
small but real-world, continuous, and 
noisy problem domains.

Heuristic learning principles are 
not enough
« 1 »  About 15 years ago, I began work-

ing together with Wolfgang Stolzmann and 
Joachim Hoffmann on the development of 
anticipatory classifier systems (Stolzmann 
2000). We attempted to tackle the funda-
mental problems of learning a cognitive 
model in well-structured environments, 
implementing contextual rule differentia-
tion, rule adjustment, and rule integration 
mechanisms. With iterative improvements 
and additions, the ACS2 system was devel-
oped. ACS2 combines a heuristic rule differ-
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entiation and specialization mechanism that 
is based on Hoffmann’s cognitive learning 
principle, termed “anticipatory behavioral 
control” (Hoffmann 2003), with a gener-
alization mechanism that is implemented 
by a steady-state evolutionary algorithm in 
ACS2. In my book on Anticipatory Learning 
Classifier Systems (Butz 2002), I summarized 
the capabilities of the developed system as 
well as the fundamental challenges.

« 2 »  While the fundamental challenges 
included the problem of partially observ-
able Markov decision processes (POMDPs), 
I had also acknowledged that “essentially 
any characteristic in an environment that 
causes the deterministic perceptual causal-
ity to become probabilistic or noisy causes 
difficulties” (Butz 2002: 127). I fear that the 
algorithm presented in the target article suf-
fers similar difficulties. That is, while it may 
be able to solve the tackled, small POMDP 
problem, it is very doubtful that the heuris-
tic learning mechanism put forward is able 
to produce similarly good solutions in noisy, 
continuous environments.

« 3 »  Is this a concern for the construc-
tivist community? In the following I will 
argue that it is indeed a severe concern and 
I propose that the community should focus 
their research efforts on working with sys-
tems that experience noisy, continuous envi-
ronments rather than symbolic ones.

Noisy experiences
« 4 »  Our Western world seems domi-

nated by symbolic knowledge, and so we 
tend to forget our actual, natural environ-
ment. In this environment, our perceptions 
are typically continuous and noisy, and 
manipulations of and interactions with the 
environment sometimes fail by nearly pure 
chance. How can we live in this messy, non-
deterministic environment with all its cave-
ats? How can we learn a useful world model 
with which we can manipulate and interact 
with the environment purposefully?

« 5 »  Various evidences suggest that our 
mind constructs predictive models about 
the consequences of body-environment in-
teractions (Butz 2008). Even in the simplest 
cases, a certain form of causality is present 
during such interactions. Thus, learning 
about condition-action-effect contingen-
cies is possible and such knowledge is useful 
when striving for a particular effect. How-

ever, a full-blown model of the environment 
with all its inherent contingencies is too 
large to grasp. Thus, as the author also sug-
gests in §42, most likely the models we learn 
need to focus on those aspects that are rel-
evant for us, that is, those that are associated 
with positive or negative affective values.

« 6 »  However, these models need to 
be functional in noisy, continuous environ-
ments. Thus, conditions, actions, and ef-
fects are initially not symbolic but consist of 
contextual subspaces, motor primitives, and 
local perceptual changes. According to Law-
rence Barsalou (1999) and others, we learn 
our symbol processing capabilities during 
our lives, grounding these capabilities in our 
perceptual, noisy, and continuous experi-
ences.

« 7 »  Most schema-oriented learning 
systems, such as the one proposed in the 
target article, have not managed to devel-
op symbol systems in a noisy, continuous 
realm. Schema learning systems up until 
now have stuck to symbol manipulation 
problems, such as the admittedly tricky 
hyper-flip problem. But are these problems 
constructive? Can they lead to a system that 
may convincingly develop a constructivist 
system that becomes cognitive? I doubt it.

Natural environments
« 8 »  What can be done about it? I be-

lieve that the constructivist community 
should focus on the question of how sym-
bol processing capabilities can develop in 
noisy, continuous environments – where 
experiences are grounded and embodied in 
an actual bodily perception-action system. 
Evidence has been accumulating over re-
cent years that this is not an insurmountable 
endeavor. The theory of event coding (Hom-
mel et al. 2001) postulates that events may 
be a highly important cognitive concept for 
structuring experiences and thus for per-
ceiving the environment in chunks that may 
be symbolizable. Also, in the cognitive ro-
botics literature, the registration of events – 
such as when touching an object – has been 
acknowledged as one key mechanism for 
segmenting the environment into meaning-
ful interaction components (Wörgötter et al. 
2013). Bodily interactions with the environ-
ment were structured into a natural action 
grammar with properties that are strongly 
related to Noam Chomsky’s universal gram-

mar (Pastra & Aloimonos 2012). Research 
from my own group suggests that goal-ori-
ented representations should be separated 
from representations of spatial interaction 
for setting the stage to develop composi-
tional concept structures, which are neces-
sary for language development (Butz 2013).

« 9 »  In conclusion, I agree with the 
authors that schema learning approaches 
should be re-considered and revived. Start-
ing with a symbolic world and facing one 
particular, partially-observable toy problem, 
however, will not advance schema learn-
ing mechanisms. Rather, these mechanisms 
need to be implemented in environments 
within which interactions are continuous, 
state transitions are stochastic to a certain 
degree, and perceptions are noisy. Tools and 
mechanisms are currently being developed 
that can segregate these continuous realms 
into meaningful and purposeful symbol 
systems. Key components of such mecha-
nisms are anticipations, modularizations, 
and event-based separations. Measures of 
valence and resulting purposeful, goal-ori-
ented interactions are most likely additional 
key concepts. A learning system that builds 
schemas based on these principles may in-
deed be the way forward towards scalable 
cognitive systems that develop in complex 
environments, effectively implementing 
constructivist theories of cognition.

Martin V. Butz is Full Professor at the Eberhard Karls 
University of Tübingen, in the Faculty of Science, 

Department of Computer Science, and Department 
of Psychology. His research group works on cognitive 

modeling, focusing on how the brain develops 
representations of the body and the surrounding 

space and how these representations are used to 
manipulate the environment goal-directedly.
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The Power of Constructivist 
Ideas in Artificial Intelligence
Kristinn R. Thórisson
Reykjavik University, Iceland 
thorisson/at/gmail.com

> Upshot • Mainstream AI research 
largely addresses cognitive features 
as separate and unconnected. Instead 
of addressing cognitive growth in this 
same way – modeling it simply as one 
more such isolated feature and continu-
ing to uphold a wrong-headed divide-
and-conquer tradition – a constructiv-
ist approach should help unify many 
key phenomena such as anticipation, 
self-modeling, life-long learning, and 
recursive self-improvement. Since this is 
likely to result in complex systems with 
unanticipated properties, all cognitive 
architecture researchers should aim to 
implement their ideas in full as running 
systems to be verified by experiment. 
Perotto’s paper falls short on both these 
points.

« 1 »  Cognitive growth, self-inspection, 
anticipation (prediction based on partial 
observation), self-organization – what do 
these have in common? They are all part 
of a growing set of concepts from biology, 
cognitive science, artificial intelligence, and 
psychology that must be related to one an-
other if we are ever to produce a coherent 
theory of intelligence, whether in machines, 
animals, or humans. And if our aim is to 
build working systems – if our stance is a 
software engineering one with an end-goal 
of building deployable systems that can op-
erate in real-world environments, whether 
it be space probes, housecleaning robots, 
deep-sea explorers, or stock-market invest-
ment programs – then our methodological 
approach must embody principles that are 
useful for steering our efforts when design-
ing, architecting, implementing, and testing 
our systems.

« 2 »  Filipo Perotto presents in his paper 
a model of an anticipatory learning mecha-
nism, CALM, which is based on construc-
tivist principles. His high-level model of 
agent-environment coupling, CAES, seems 
a reasonable one. Both models are based on 

the fundamental assumptions, which I agree 
with, that: (a) to understand intelligent be-
havior we must include in our analysis the 
context in which it operates; and (b) most 
environments of any interest to intelligent 
beings contain a mixture of deterministic 
and non-deterministic causal connections, 
with many of the former remaining invis-
ible. In my view, and it would seem Perotto’s 
as well, an environment with complex caus-
al relationships (e.g., our everyday world) 
gives rise to a vast number of potentially ob-
servable phenomena, many of which do not 
clearly or readily convey their underlying 
causes; this set of potential observable and 
inspectable phenomena is nevertheless the 
only information that an intelligent system 
has access to, via their sensory apparatuses, 
for anticipating how their external environ-
ment behaves so as to efficiently and effec-
tively achieve its goals within it.

« 3 »  Before continuing with direct 
commentary, some points are in order so 
as to elucidate the context in which I look 
at systems engineering, architecture, and 
constructivism. Due to the high number of 
combinatorics that a complex environment 
will produce, through countless interactions 
between its numerous elements, an agent 
must create models that isolate and capture 
some essence of underlying causes (invari-
ants or partial invariants) in this environ-
ment (Conant & Ashby 1970). Such mod-
els must be capable of capturing abstract 
levels of detail that can be used to steer the 
operations of a system towards efficient ex-
penditure of computational resources –any 
thought spent on details completely unre-
lated to goals (future and present) would be 
a waste of the agent’s time. Thus, the partial 
models of the environment that an intel-
ligent agent creates will likely form some 
sort of a cognitive “random-access” abstrac-
tion hierarchy. Depending on the type of 
current goal and situation, the agent can 
then choose models at a particular level of 
abstraction at any time to help it exclude 
irrelevant issues from consideration when 
decisions are being made about how to 
achieve the goal in that situation. A coher-
ent, unifying model of cognition following 
constructivist principles must explain how 
this works, in particular how goals, models, 
experiences, and iterative knowledge acqui-
sition and improvement operate in concert 

to achieve cognitive growth in an agent. An 
engineering methodology for how to build 
artificial systems implementing such func-
tions must go further, by helping with de-
fining specifications for an implementable 
architecture, and providing guidelines on 
how to implement them in a way that allows 
experimental evaluation.

« 4 »  An artificial system built to 
achieve general intelligence must be able to 
deal with novel situations – situations not 
foreseen by its programmers. Instead of be-
ing given pre-programmed algorithms by its 
designers, known to be applicable to partic-
ular and specific problems, tasks, situations, 
or environments, the AI itself must be im-
bued with the ability to generate algorithms 
(or, compute a control function – I do not 
distinguish between the two here). For this 
to be possible, the system must further-
more be equipped with the ability to (re-)
program itself, otherwise it cannot sensibly 
change its own operation in any meaningful 
way based on acquired experience. And to 
be able to do so, the system must be reflec-
tive – that is, the system’s architecture and 
operational semantics must be captured in a 
way that enables it to read and interpret its 
own structure and operation. This is what I 
consider the essence of a constructivist AI 
methodology: specifications for how to im-
bue machines with the capability to make 
informed changes (whether slowly or quick-
ly) to their own operation, via the runtime 
principles embodied in their architecture. I 
do not believe constructivist AI can be done 
without some form of self-programming on 
the part of the machine, which in turn can-
not be achieved without transparency of its 
operational semantics. In fact, even more 
radically, I suspect artificial general intel-
ligence cannot be achieved at all without 
such capabilities; higher levels of cognitive 
operation in the context of novel or unan-
ticipated tasks, situations, and environments 
must require some sort of cognitive growth 
– namely, some form of re-programming of 
the cognitive system’s operation. Conversely, 
constructivist views on cognition are so dif-
ferent and incompatible with standard soft-
ware engineering methodologies, especially 
with its tradition of manual software crea-
tion, that they cannot be used at all for engi-
neering such systems. To address construc-
tivist principles head on in a computational 
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framework will require a new constructivist 
AI methodology (CAIM; Thórisson 2012).

« 5 »  Whether or not Perotto agrees 
with my views on the nature and need for 
constructivist development principles thus 
outlined, he does make some claims to tak-
ing steps toward computational implemen-
tations of constructivist principles. In this 
context, many important questions come 
to mind – chief among them being how 
effective the ideas are for explaining cogni-
tive growth in nature, and how useful might 
they be for helping implement artificial gen-
eral intelligence. As Perotto’s paper seems to 
be aimed more at the second topic, we can 
ask, firstly, do the ideas presented in his pa-
per help with – or are they likely to lead us 
to – better software engineering methods 
for implementing constructivist learning in 
deployed systems? Secondly, we can ask, if 
they do in fact offer some new insights to 
this end, how much still remains to be ex-
plained for such systems to spring forth as a 
result – or conversely, how big a part of the 
constructivist puzzle does the work attempt 
to address? Let us look at these in order.

« 6 »  The aim of AI is not just to specu-
late but to build working, implemented sys-
tems. In AI, any theoretical construct aimed 
at advancing our understanding of how to 
implement cognitive functions should ulti-
mately be judged on whether actual imple-
mentation can conclusively, or partially, al-
low us to conclude through reliable means 
(i.e., scientific experimentation), that the 
ideas, when operating in a relatively com-
plete AI architecture situated in a complex 
world (Perotto’s target environments), are 
capable of scaling up. By “scaling up” I mean 
the ability of a system to grow in a way that 
supports recursive self-improvement in 
complex environments (e.g., the physical 
world), with respect to its top-level goals. 
This question is of course difficult to answer, 
whether experimentally or analytically. A 
quick walk down memory lane reminds us, 
however, that the history of AI is replete 
with examples of proposals that looked great 
on paper but completely failed such scaling 
up when implemented in a running system, 
or when attempts were made to expand the 
models the ideas embodied to include more 
of the many functional characteristics that 
they originally left untouched. Unfortunate-
ly, experimental evaluation of Perotto’s pro-

posed ideas is touched on only briefly in the 
paper, and the support provided to answer 
this question is inconclusive at best. On this 
count, therefore, not much can be said about 
the scalability of Perotto’s ideas. This is dis-
appointing because a fundamental feature 
of known constructivist systems in nature is 
their capability to grow cognitively with ex-
perience – itself a form of scaling-up. Other 
phenomena, such as the power of the CALM 
schema formalism to produce new knowl-
edge of complex environments, to support 
models of self (required for any system ca-
pable of self-directed cognitive growth), and 
their ability to support self-inspection, are 
also not addressed to any sufficient extent 
in the work. Since these issues are briefly 
touched on or left unmentioned, we can 
only assume that they remain unaccounted 
for by the present work.

« 7 »  My second question regards the 
“size of the intelligence puzzle” addressed. 
An artificial cognitive system must, to have a 
chance at becoming a comprehensive theory 
of the major facets of intelligence, include 
a large number of functions that allow the 
system to operate relatively autonomously in 
complex environments. This theoretical scal-
ability of an isolated mechanism is its perse-
verance and robustness when included in a 
better (larger, more comprehensive) model/
theory, which can in turn serve as the foun-
dation for building systems with increased 
operating power, including an increased 
capacity for cognitive growth and architec-
tural complexity. If Perotto’s work turns out 
to be correct, if it indeed offers, as Perotto 
claims in the abstract, “a step towards com-
putational implementation of constructivist 
principles,” how much of the phenomenon 
in question – cognitive growth – remains to 
be explained? The lack of a clear connection 
between his CALM and CAES models is al-
ready a sign that some amount of work re-
mains to be done in this direction. My own 
list of candidate principles and features (cf. 
some already mentioned above) that should 
be accounted for in any reasonable theory 
of cognitive growth is, unfortunately, quite 
a bit longer than that addressed in Perotto’s 
paper. Firstly, as described above, cognitive 
growth requires some kind of autonomic, 
recursive self-improvement. Although my 
team has made some progress on this front 
recently (Nivel & Thórisson 2013, Nivel et 

al. 2013), research on the topic is still in its 
infancy, with a host of unanswered practical 
and theoretical questions. Such questions 
include: What kind of representations1 are 
amenable to automatic self-programming 
for cognitive growth (existing programming 
languages and paradigms created for hu-
mans require human-level intelligence to be 
used – which calls for the very phenomenon 
we are striving to understand how to imple-
ment); how can the transparent operational 
semantics needed for automatic program-
ming be achieved? Related to that are the 
questions: How can a system’s operational 
semantics be measured; what kind of meta-
level control structures can be used to steer 
cognitive growth; what kinds of control ar-
chitectures can serve as host architectures 
for the proposed (or any other) constructiv-
ist principles? Questions regarding theoreti-
cal scalability issues loom large.

« 8 »  These are, of course, not simple 
topics. Quite the contrary, they are deep 
and challenging. But they are central to 
constructivist approaches, developmental 
robotics, and principles of cognitive growth, 
and it is precisely for that reason that they 
must not be left unaddressed, lest our efforts 
become victims to the same oversimplifi-
cation and incorrect application of divide-
and-conquer methodology that has plagued 
much of AI research in the past half century 
(cf. Thórisson 2013). Unlike so many other 
phenomena in AI, e.g., planning, vision, rea-
soning, and learning, that have been largely 
addressed by calling them “computational” 
and studying them in isolation through the 
same strictly allonomic methodologies as 
used for banking systems, word processors, 
and Web page construction, a constructivist 
methodology holds a promise – a potential – 
to unify a host of complex cognitive mecha-
nisms, most of which have eluded scientific 
explanation so far. A holistic stance is by far 
the most likely to lead to an understanding of 
the phenomenon of intelligence, and anyone 
with a constructivist mindset has already 
taken an important step in that direction. 
But for this to pave the way towards a bet-

1 |  My use of “representations” implies a 
larger scope than models, capturing virtually 
anything that might be needed to be encoded in a 
particular runtime medium for a running (“live”) 
intelligent system.
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ter theory, a genuine attempt must be made 
to weave as many key cognitive phenomena 
into the account as possible, to attempt to 
provide a unifying account. And for any 
engineering effort to be taken seriously, the 
requirement for experimental evaluations of 
(physical and/or virtual) running software 
systems cannot go ignored. Perrotto’s stance 
on these pressing issues remains for the time 
being largely unknown; we can only hope 
that he addresses them in the future.

Kristinn R. Thórisson has been doing research in 
artificial general intelligence and real-time interaction 

for over two decades in academia and industry. His 
AERA constructivist cognitive architecture is the 

world’s first system that can learn complex skills by 
observation in largely underspecified circumstances. He 

is a two-time recipient of the Kurzweil Award and has 
a Ph.D. from Massachusetts Institute of Technology.
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Anticipatory? Yes. 
Constructivist? Maybe
Georgi Stojanov
The American University of Paris, 
France 
gstojanov/at/aup.edu

Upshot: The CALM cognitive agent with 
its learning mechanism, as presented by 
the author, can be described as “trivially 
constructivist.” Probably, at best, it can be 
seen as a model of the empirical abstrac-
tion but not of the reflective abstraction. 
The “intrinsic motivations” in the simu-
lated agent presented as “evaluative 
signals” sent from the agent’s “body” to 
its “mind” can be seen as low-level physi-
ological drives. They cannot account for 
far more sophisticated intrinsic motiva-
tions such as curiosity.

« 1 »  In the opening sections and in §1, 
Filipo Perotto sets up a formidable challenge 
for himself by promising a step toward an 
artificial general intelligence (AGI) that fol-
lows the constructivist approach of Piage-
tian flavor. There is also an explicit critique 

of this constructivist AI, in which despite all 
the promises made, there has been a “lack 
of concrete results.” The critique is justified 
if the expected concrete result was to build 
an artifact that would exhibit the behavior 
of a three-year-old infant. We are certainly 
not there yet. On the other hand, the con-
structivist AI approach certainly made huge 
theoretical advances by demonstrating the 
inappropriateness of the traditional soft-
ware methodology to deal with the design 
of self-constructive autonomous intelligent 
agents (e.g., Thórisson 2012), or shifting the 
research focus to issues neglected in tradi-
tional AI: sensorimotor interaction, intrin-
sic motivation, complete cognitive archi-
tectures (e.g., Stojanov, Kulakov & Clauzel 
2006; Stojanov & Kulakov 2011).

« 2 »  In §2 and §3, Perotto introduc-
es the conceptual structure of a schema: 
context ∧ action → expectation, which he 
also calls an “elementary piece of knowl-
edge.” The “context” vector represents the 
readings of all external and internal sensors, 
and when some “action” is executed, the 
agent anticipates the outcome in terms of 
the “expectation” vector. Thus, throughout 
its lifetime, the agent put in particular en-
vironment should learn to predict the out-
comes of its actions (“to adapt itself ”), even 
if the environment is partially observable. 
Many researchers have used this “context ∧ 
action → expectation” construct (Drescher 
1991; Schachner 1996; Schachner, Real del 
Sarte & León 1999; Tani 1996; Stojanov, 
Bozinovski & Trajkovski 1997; Chaput 2004; 
see Stojanov 2009 for an overview of com-
putational models of Piagetian schemas) in 
the task of learning forward-models (or an-
ticipative models) of the environment. The 
simulated environment is represented via a 
FPOMDP (§28). The states of the environ-
ment are represented with a set of proper-
ties X, and among those properties there 
are some that cannot be perceived by the 
agent’s perceptual apparatus. This leads to 
perceptual aliasing and makes the problem 
of learning effects of actions in given con-
texts much more difficult. CALM (§38) is 
the learning mechanism designed to learn 
the dynamics of the underlying FPOMDP 
through execution of agent’s actions (which, 
from the point of view of the FPOMDP are 
controllable variables) and construction 
of reliable predictive schemas, described 

above. §50, §51 and §52 describe the three 
basic methods for schema construction in 
CALM: differentiation, adjustment, and in-
tegration. As there are unobservable proper-
ties of the environment, sometimes CALM 
will fail to predict accurately the effect of 
some action, and in some cases, the situa-
tion can be remedied by abstract differen-
tiation (§55). Essentially, this means that 
the context and expectation vectors are arbi-
trary values that are enlarged and attributed 
in a way to make them distinct from existing 
schemas. The new schemas are called syn-
thetic elements as they cannot be directly 
perceived. The method of propagation of the 
value of the synthetic elements is called ab-
stract anticipation (§57). Once (if the com-
plexity/observability ratio allows) the agent 
using CALM learns the environment model 
perfectly, it can always predict the effect of 
its action in a given context.

« 3 »  My condensed (and, I hope, not 
too simplistic) description of CALM in 
the previous paragraph is to show that (al-
though an original and efficient solution) it 
is constructivist only in a trivial way: it learns 
a model of its environment incrementally. 
Perotto appears to be like many develop-
mental psychologists in the 1970s:

“ What they [developmental psychologists] 
called construction seemed to refer to the fact that 
children acquire adult knowledge not all at once, 
but in small pieces. I did not think that this was 
a revelation and therefore called their approach 
‘trivial constructivism’.” (Glasersfeld 2005: 10).

The monolithic single-thread algorithm is 
completely deterministic and will (eventu-
ally) come up with the same result, given 
the same learnable environment. There is no 
learning-to-learn (i.e., change of the learn-
ing trajectory) nor ability for reconceptu-
alization of a given situation, or evolution 
of more sophisticated intrinsic motivations 
(more about motivations below). Moreover, 
as Perotto notes in §9, “The agent needs to 
be able to detect high-level regularities in 
the dynamics of the environment, but this is 
not possible if the agent is stuck in a rigid 
representational vocabulary.” The represen-
tational vocabulary of a CALM-driven agent 
is rigid: all of the possible different schemas. 
Synthetic items definitely enlarge it, but only 
up to a certain predefined limit. There is no 
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way in which (in a genuinely constructivist 
spirit) the agent can impose some organiza-
tion on the sensed environment. In continu-
ation of §9 we can read

“ In a constructivist approach, cognitive devel-
opment must be a process of gradual complexi-
fication of the intelligence, where more abstract 
structures (symbolic) are built from simpler 
sensorimotor interactions, in a way that harmo-
nizes the lived experiences with the constructed 
model.”
CALM does not provide a way to build 
“more abstract structures… from simpler 
sensorimotor interactions.” At best, there 
are the synthetic elements that contain ab-
stract properties in the sense that they do 
not correspond to any sensory inputs. Given 
that those abstract properties are added to 
schemas whose context and action vectors 
are equal, it is impossible to understand 
them as abstract/symbolic structures in the 
sense given in §9. In Piagetian parlance, the 
learning exhibited by CALM could be seen 
as model of the empirical abstraction but not 
of the reflective abstraction that is crucial for 
cognitive development and creative behav-
ior. Briefly, via empirical abstraction, some 
quality (e.g., weight or color or contingency 
among actions and qualities) is abstracted 
from an object/situation. On the other hand, 
reflective abstraction is about reorganiza-
tion of existing schemas and their projection 
onto a higher plane. (See Kitchener 1986: 
61–65 for an informative discussion of em-
pirical and reflective abstraction, as well as 
the discussion in Campbell & Bickhard 1993 
on the knowing levels).

« 4 »  In §13, one can read that the 
agent’s body with its “internal states and me-
tabolisms, elements that belong neither to 
the mind nor the environment… allow the 
agent to have intrinsic motivations…” I be-
lieve that the decision to introduce the two 
entities (“body” and “mind”) is somewhat 
arbitrary, given that it is barely mentioned in 
the rest of the paper. It appears that the body 
is introduced only to have the above-men-
tioned possibility to have “intrinsic motiva-
tions.” If this is the case, then the intrinsic 
motivations can be related to low-level phys-
iological drives (hunger, pain-avoidance) 
with no possibility for development of more 
sophisticated forms of motivations such as 

curiosity. If, on the other hand, the intrinsic 
motivations can be placed in the “mind” of 
the agent, I see no reason to draw the arbi-
trary body-mind distinction.

Georgi Stojanov obtained his PhD degree in 
computer science and AI from UKIM University 
in Skopje, Macedonia in 1997 on “Anticipation 

theory and electro-expectograms in the context of 
biological and machine intelligence.” His research 

interests include: interactivism and constructivism; 
cognitive development and creativity; analogy 

and metaphor. He was a visiting scholar at the 
University of Trieste, Italy, Les Archives Jean Piaget in 

Geneva, Université de Versailles-Saint-Quentin-en-
Yvelines in Paris, and at the Institute for Non-linear 

Science, UCSD. As of 2005, he is an associate 
professor at the American University of Paris.
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> Upshot • Interaction-based models of 
cognition force anticipatory and con-
structivist models. The CALM model of-
fers significant development of such 
models within a machine learning 
framework. It is suggested that moving 
to an entirely interactive-based model 
offers still further advantages.

« 1 »  Charles Sanders Peirce introduced 
action and interaction as the proper loci for 
understanding the mind well over a cen-
tury ago (Joas 1993). An interaction-based 
model of cognition, in turn, is intrinsically 
anticipatory – i.e., anticipations of potential 
actions and interactions (Bickhard 2009b; 
Buisson 2004; Piaget 1954). And an action 
and interaction-based model of cognition 
forces a constructivism: it is not feasible for 
the world to impress competent interactive 
system organization into a passive mind; it 
must be constructed. For yet another step, 

given that prescience does not exist, such 
a constructivism must be a variation and 
selection constructivism, an evolutionary 
epistemology (Campbell 1974). These char-
acteristics, thus, form a coherent framework 
for understanding cognition, and, more 
generally, mind (Bickhard 2009b).

« 2 »  Classic passive mind models, how-
ever, descending from the ancient Greeks, 
still dominate the scene, currently in their 
“recent” incarnations of symbolic compu-
tationalism and connectionism. Machine 
learning is an interesting combination of 
perspectives: learning about the environ-
ment requires checking what is tentatively 
learned against that environment, which 
requires action and anticipation and con-
struction of what is checked. Most cleanly, 
what is checked are those anticipations per 
se. But there is still also a reliance on passive 
models of perception (generally based on 
sensations) and restricted models of action 
and construction.

« 3 »  Filipo Perotto’s CALM is a signifi-
cant advance within this framework, espe-
cially in its ability to extract anticipatory in-
formation from an only partially observable 
and not fully deterministic world, and to use 
synthetic elements in doing so. It is impor-
tant to demonstrate that these more realis-
tic framework assumptions can be handled, 
and to show how they can be handled.

« 4 »  But CALM, too, is built on sensa-
tion models of perceiving and on singleton 
actions. One of the current foci for devel-
opment of the CALM model is to develop 
possibilities of chaining schemas – again, 
I would agree that this is exactly the right 
direction. I would like to comment, how-
ever, on an even more general approach that 
might be considered – a fully interactive ap-
proach.

« 5 »  Consider that passive sensations, 
insofar as they exist at all, functionally serve 
to detect properties of the environment, and 
that such detection – as a strictly factual 
matter – is all that is functionally relevant 
to the system. In particular, such detections 
need not be understood to represent that 
which is detected in order to account for 
their influences on system processing. Still 
further, such detections can also be real-
ized by fully interactive processes, not just 
by passive receptive processes (Bickhard & 
Richie 1983). On the other hand, anticipa-
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tions concerning possible interactions with 
the environment also can, and arguably do, 
occur with respect to whole patterns of inter-
action, not just singular actions. Chaining of 
schemas is precisely a step in this direction, 
but it requires more than “chains” to be able 
to model general interactive patterns.

« 6 »  So, I would suggest that patterns of 
interaction can serve:
1  |	 detection functions, rather than sensa-

tions and perceptions interpreted as 
representational (with all of the classic 
problems that that interpretation entails: 
Bickhard 2009b),2 and

2  |	 as patterns of interaction that are antici-
pated as possible in the future, and

3  |	 as patterns that can be tentatively con-
structed in learning more about the en-
vironment – learning more about what 
patterns of interaction can be anticipat-
ed as possible, given what prior interac-
tive detections have already occurred.
« 7 »  Such shifts generate a dynamic 

systems model, more than a classic compu-
tational model, but one in which represen-
tation is not absent:. truth value emerges in 
anticipations that are capable of being true 
or false, and cognitive representation more 
generally can be built from organizations of 
such anticipations (Piaget 1954; Bickhard 
2009b). In such a model, representation is 
not built on or out of presumed sensations 
as representations.

« 8 »  Modeling the dynamics of such 
dynamic systems is difficult. For one class 
of problems, there are no topological or 
metric spaces built in to serve as spaces for 
generalization. On the other hand, if the 
construction of such topological spaces can 
itself be constructed, then we can model the 
cognitive development and organization 
and re-organization of such spaces in chil-
dren and adults – a higher level of learning 
and development than is usually addressed 
(Bickhard & Campbell 1996). For another 
class of problems, cognitive representations 
of, for example, objects or numbers, cannot 

2 | N ote that this also frees the model from 
being able to generalize only along the dimen-
sional variables that are built into the sensation 
apparatus, and from the related built-in metric 
spaces for error, etc. Of course, it also makes the 
dynamics of such generalization more difficult to 
model.

be simply presupposed, but must themselves 
be constructed. However, that was among 
the basic insights of Piaget some time ago 
(Piaget 1954; Allen & Bickhard 2011, 2013a, 
2013b, 2013c).

« 9 »  Overall, then, moving to a fully 
interactive dynamic systems framework 
makes a number of modeling problems 
much more difficult. But it offers advantages 
of avoiding classic problems concerning, for 
example, the nature of representation (Bick-
hard 2009b), and offers direct approaches to 
modeling phenomena that are very difficult 
to approach within standard frameworks 
(e.g., re-organizing the topology of repre-
sentational spaces in response to under-
standing an analogy; Bickhard & Campbell 
1996).

Mark Bickhard is the Henry R. Luce Professor in 
Cognitive Robotics and the Philosophy of Knowledge at 
Lehigh University. He is affiliated with the Departments 

of Philosophy and Psychology, and is Director of 
the Institute for Interactivist Studies. His work 

focuses on the nature and development of persons, 
as biological, psychological, and social beings.
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Representing Knowledge 
in a Computational 
Constructivist Agent
Thomas Degris
ENSTA ParisTech-INRIA, France 
thomas.degris/at/inria.fr

> Upshot • The aim of this commentary 
is to relate the target article to recent 
work about how to represent the knowl-
edge acquired from experience by a con-
structivist agent.

« 1 »  Constructivist agents acquire new 
knowledge and maintain existing knowl-
edge by experimenting with their environ-
ment. A key question is then how to repre-
sent knowledge for such an agent.3 In the 

3 |  Joseph Modayil and I proposed an answer 
to that question in their presentation “Scaling-up 

target paper, knowledge that can be created 
and updated from data is emphasized, but 
a different mathematical framework and a 
different architecture, namely the Horde ar-
chitecture (Sutton et al. 2011), is used. This 
commentary presents the similarities and 
differences between the target paper and the 
Horde architecture.

« 2 »  Both papers focus on a situated 
agent embedded in its environment. The 
agent does not have access to the full state of 
the environment. To be able to understand 
better its interaction with the environment, 
the agent needs to construct abstract inter-
nal structures from a low level sensorimotor 
loop. In both papers, the internal represen-
tation built by the agent comes from its own 
experience and does not need to match an 
arbitrary absolute representation of its envi-
ronment.

« 3 »  The target paper has chosen to rep-
resent the knowledge of the agent with tree-
structured representations. While trees can, 
in principle, take advantage of specific struc-
tures in the data, they also have issues that 
can make them impractical to use as a life-
long constructivist agent in the actual world. 
More specifically, as mentioned in the target 
paper, the main idea of structured represen-
tations is that the system dynamics can be 
factored to save memory and computational 
time. But such structure just may not be in 
the data. For instance, if one would like to 
predict the next value of a bump sensor on 
a small mobile robot, it is likely that infor-
mation from all the sensors on the robot, as 
well as many abstract representations, may 
help in one way or another to make a better 
prediction. Thus, a prediction as simple as 
the value of a bump sensor may simply not 
be factorable. Moreover, even when some of 
the system dynamic may be factorable, there 
is no guarantee that other representations, 
such as value functions or policies, will be 
factorable (Boutilier, Dearden & Goldszmidt 
2000). For an agent to take complex decision 
or to understand a complex environment, 
perhaps it is unavoidable to consider a large 
number of variables or signals. In compari-
son, the Horde architecture focuses on al-
gorithms with a complexity in computation 

knowledge for a cognizant robot” at the AAAI 
Spring Symposium on Designing Intelligent Ro-
bots: Reintegrating AI, Stanford University, 2012.
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and memory that is linear to the number of 
parameters to learn. In practice, thousands 
of predictions depending on thousands of 
features can be learned online in real time 
on an actual robot (Modayil, White & Sut-
ton 2012).

« 4 »  The agent in the target paper con-
structs a set of schemas to build a predictive 
representation. A schema takes a context 
and an action to make a prediction about 
the next time step. A context can be seen as 
a set of conditions on the agent state; that is, 
conditions on internal variables and the last 
observation from the sensors. The action in 
the schema describes what the agent will do 
to go to the next time step. Thus, knowledge 
constructed by the agent answers questions 
such as: “Am I going to be connected to my 
docking station at the next time step if I do 
this action?” In comparison, demons in the 
Horde architecture can represent knowl-
edge similar to schemas but also more gen-
eral knowledge: for a given agent state and a 
policy – that is, a sequence of (stochastically 
chosen) actions – a demon makes a tempo-
rally abstract prediction. For instance, an 
agent can construct the answer to questions 
such as: “What is the probability of being 
connected if I follow the policy going back to 
my docking station?” or “How much energy 
will I use to go back to my docking station?” 
Moreover, there are two additional advan-
tages with temporal abstractions. First, de-
mons can be used to build predictive fea-
tures in the agent internal state. Predictive 
state representations (PSRs) are known to 
be more general than POMDPs or nth-order 
Markov models – representations based on 
history (Singh, James & Rudary 2004). Sec-
ond, it becomes possible to consider high-
level planning on temporal abstractions, as 
has been proposed with the option frame-
work (Sutton, Precup & Singh 1999).

« 5 »  Overall, the Horde architecture 
has two key features compared to the rep-
resentation used in the target paper. First, 
Horde can learn and maintain predictive 
knowledge online and in real time. Second, 
Horde can learn answers to temporally-ab-
stract questions. Thus, the Horde architec-
ture is a direct possible answer to two of the 
questions mentioned at the end of the target 
paper: how to extend the work to stochas-
tic and continuous environments and how 
to consider action sequences. Of course, the 

Horde architecture asks its own set of ques-
tions: What are the criteria to create or de-
lete demons based on data and experience? 
What should be the behavior of an agent in 
its environment to optimize learning in de-
mons (intrinsic motivations)? The path to a 
constructivist agent for a general artificial 
intelligence remains uncertain.

Thomas Degris is a postdoctoral fellow in the Flowers 
team from ENSTA ParisTech-INRIA. He did his PhD at 

University Pierre et Marie Curie on factored Markov 
decision processes. He also worked as a postdoctoral 

fellow in the RLAI group at the University of Alberta.
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Some Comments on the 
Relationship Between 
Artificial Intelligence 
and Human Cognition
Bernard Scott
Centre for Sociocybernetics 
Research, Bonn, Germany 
bernces1/at/gmail.com

> Upshot • In making a contribution to 
artificial intelligence research, Perotto 
has taken note of work on human cogni-
tion. However, there are certain aspects 
of human cognition that are not taken 
into account by the author’s model and 
that, generally, are overlooked or ignored 
by the artificial intelligence research 
community at large.

« 1 »  In his paper, Filipo Perotto has 
taken note of work on human cognition. 
In particular, he references Jean Piaget (§6) 
and Ernst von Glasersfeld (§7). The former 
developed his “genetic epistemology” by 
studying the development of human chil-
dren. The latter, using Piaget as one of his 
main sources, developed “radical construc-
tivism,” a philosophical treatise about how 
humans come to know. Rather than at-
tempt to position the author’s work in the 
broad field of artificial intelligence research, 
something I do not feel confident to do 

without further reading, I wish to note as-
pects of human cognition that the author’s 
model does not take into account and that, 
generally, are overlooked or ignored by the 
artificial intelligence research community at 
large.

« 2 »  First, I note that humans, like 
other biological organisms, are dynamical 
systems (§11), far from equilibrium, whose 
structures are continually being formed and 
reformed by the dissipation of energy. The 
author does state that humans are dynami-
cal systems; however, his account is limited 
to the statement (in footnote 3) that “A dy-
namical system consists of an abstract state 
space evolving in time according to a rule 
that specifies the immediate future state 
given the current state.” Far richer concepts 
of what dynamical systems are and the chal-
lenges of modeling them are to be found, for 
example, in the writings of Heinz von Fo-
erster (2003: chapter 1) and Ilya Prigogine 
(1981) on self-organisation. Humans are 
also organisationally closed, autopoietic 
systems, endowed with an operationally 
closed nervous system. Using these foun-
dational ideas, Humberto Maturana and 
Francisco Varela (1980) developed a “biol-
ogy of cognition.” This work adds consid-
erably to our understanding of constructive 
cognitive processes. Related ideas are to be 
found in chapters 8, 10 and 11 of von Fo-
erster (2003), where there is discussion of 
how sensorimotor activity leads to the com-
putation of “objects” as an invariant of an 
organism’s constructed reality.  These works 
are seminal accounts of what is referred to 
in later literature as “enactive cognition.”

« 3 »  The author uses the term “sym-
bolic” in §9. The author’s model is presented 
as a general mechanism for learning. It, like 
much other work in artificial intelligence 
research, ignores or takes for granted that 
which is, with few exceptions, peculiarly 
human in human cognition: the ability to 
communicate and compute using what 
George Herbert Mead refers to as “signifi-
cant symbols” – gestures, icons and utter-
ances that call forth in the sender similar 
response to those elicited in the receiver. 
Humans converse with each other and con-
verse with themselves. This truth falsifies 
the claim made by many in the artificial in-
telligence community that brains and com-
puters are both “physical symbol systems.” 
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Other critics (e.g., Searle 1980) have also 
challenged this claim.  Scott & Shurville 
(2011) provide an extended discussion of 
the topic and propose its falsification based 
on their analysis that a “symbol” is a second-
order “object” that two or more interacting 
organizationally closed systems compute as 
standing for a given first-order “object” and 
compute that they are both doing so.

« 4 »  In his model, the author of the 
target paper refers to his simulated agent as 

having a “mind” (§13).  If we take “mind” to 
refer to the conceptual processes that con-
stitute humans as individual selves, then it 
is possible find in the literature more elabo-
rated understandings of “mind” as an em-
bodied, organizationally closed, self-repro-
ducing system of concepts that arises as a 
consequence not only of ongoing cognitive 
constructions but also of social interaction 
(Pask, Scott & Kallikourdis 1975; Pask 1981; 
Scott 2007).

Bernard Scott completed a Ph.D. in cybernetics from 
Brunel University, UK, in 1976. His supervisor was 
Gordon Pask, with whom he worked between 1967 
and 1978. Among other positions, Bernard is a Fellow 
of the UK’s Cybernetics Society and Past President 
of Research Committee 51 (on sociocybernetics) 
of the International Sociological Association.
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Author’s Response: 
Evaluating CALM
Filipo Studzinski Perotto
> Upshot • In this response, I address the 
points raised in the commentaries, in 
particular those related to the scalability 
and robustness of the mechanism CALM, 
to its relation with the CAES architecture, 
and to the transition from sensorimotor 
to symbolic.

General claims
« 1 »  The commentators have touched 

important points in the ideas presented 
in the article. Some of the criticisms made 
might appear heavy, but this is due to the na-
ture of this research, not limited to technical 
applied AI questions, which aims to address 
challenging philosophical and scientific 
problems.

« 2 »  Since I declared in the beginning 
of the paper that until now, Constructivist 
AI has not been able to present “impressive 
results,” I led the readers to expect some 
spectacular results. However, the stated ex-
perimental outcomes (with the hyper-flip 
problem) can rather disappoint such ex-
pectations. The assertion might also give 
the wrong impression that I considered 
Constructivist AI stagnant until the arrival 
of this article. I am in complete agreement 
with Georgi Stojanov when he says that con-
structivist AI “certainly made huge theo-
retical advances” (§1), and I would add that 
AGI has incorporated several concepts from 
the constructivist approach, even if those 

researchers do not necessarily call them-
selves constructivists. Stojanov says that such 
critique would be justified “if the expected 
concrete result was to build an artifact that 
would exhibit the behavior of a three-year-
old infant” (§1). To date, we are not able to 
do so, neither within the constructivist ap-
proach, nor with any other form of AI.

« 3 »  In the long road towards con-
structivist artificial general intelligence, my 
article aims to be just a step forward, but it 
is still far from the finishing line. The ideas 
presented make up just a further brick for 
constructing the bridge, and not a complete 
definitive answer. As Stojanov says, this is al-
ready “a formidable challenge.”

« 4 »  As is often the case with most of 
these ambitious investigations, the work 
done until now left more open hypotheses, 
unanswered questions, ideas and promises, 
than actually determined conclusions or 
remarkable results. Nevertheless, thanks to 
that ambition, it is possible to believe that 
the work done, albeit quite modest, points 
in the right direction.

« 5 »  Despite all the efforts, we still 
find ourselves stuck between two steep 
challenges. On the one hand, there is the 
complexity of the sensorimotor problems, 
which require computationally viable mod-
els capable of treating large continuous 
domains and realizing cybernetic adapta-
tion, interactive processing of imprecision, 
refinement of skills, etc. On the other hand, 
there is the problem of constructing sym-
bols to represent abstract entities and proc-
esses, which could lead the agent to a kind 
of higher level of thought in which the ex-

perience is organized in terms of intelligible 
concepts. The ideas presented in my article 
do not solve either of these challenges but 
could eventually help AI ​​to get a foothold 
in both.

Scalability and robustness
« 6 »  The first important question cited 

many times in the commentaries can be 
summarized like this: can the mechanism 
scale up well to complex, continuous, large-
order, real-time, noisy, non-deterministic 
environments? In other words: can the vi-
ability of the model be convincingly demon-
strated in an experimental way? As claimed 
in the introduction to my article, so far no-
body has been able to do this in constructiv-
ist general artificial intelligence.

« 7 »  CALM, too, suffers from scalabil-
ity difficulties. It can scale up well on highly 
structured environments, where the agent 
deals with a large number of variables but 
where causal links are very precise, where 
relevant variables in function of the agent’s 
goals are easy to identify, and where non-ob-
servable variables exist on a very small scale. 
I agree that it is easy to be robust in such 
environments. Since CALM was designed 
to work in discrete symbolic environments, 
it is not adapted to be directly applicable to 
large sensorimotor problems.

« 8 »  Frank Guerin (§6) suggests the ex-
ample where two stereo cameras deliver a 
few million pixels in 24 bit color at thirty 
frames per second and CALM tries to pre-
dict the consequences of actions in the com-
plexity of an everyday setting. He wonders 
whether each bit of input could be used as 



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

column A column B column C

column A column B column C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

321

Author’s Response: Evaluating CALM  Filipo Studzinski Perotto

Constructivism

               http://www.univie.ac.at/constructivism/journal/9/1/301.perotto

a CALM variable. Admittedly, CALM is not 
adapted to face this kind of problem.

« 9 »  I believe that for CALM to deal 
with sensorimotor problems of larger mag-
nitudes, a bigger architecture must be devel-
oped. This includes tools that can segregate 
“continuous realms into meaningful and 
purposeful symbol systems” (Martin Butz 
§9) processing sensorimotor signals before 
linking them with other CALM modules. In 
humans, what is conveyed from the eyes to 
the association areas is more than a matrix 
of pixels, and is rather information about 
lines, contours, contrasts, movements, basic 
forms, etc.

« 10 »  The human brain is not a flat 
system processing all signals at once, but is 
divided in several zones and layers that are 
more or less specialized. Sensory and motor 
data are processed in primary areas before 
being integrated in the association zones 
of the neural cortex (Tortora & Derrickson 
2012). Roughly speaking, perhaps CALM 
can be related to the association cortex rath-
er than to the sensorimotor cortex. Guerin 
puts the right question when asking “where 
to make the cut-off between what the core 
CALM system sees and what is the respon-
sibility of other abstraction mechanisms” 
(§6). For now, this question must remain 
unresolved.

Experimental scenario
« 11 »  The experimental problem used in 

my article (hyper-flip), although adequate 
for illustrating the mechanism’s capabili-
ties, is admittedly too simplistic. It remains a 
tricky toy problem, which can demonstrate 
neither the algorithm’s robustness nor how 
to solve concrete problems. It would be 
necessary to conduct more sophisticated 
experiments to show that CALM could be 
able to discover unobservable and relevant 
environmental properties, representing and 
using them efficiently as synthetic elements 
in its world model when facing more com-
plex problems.

« 12 »  I can only agree with Kristinn 
Thórisson when he says that “the aim of AI 
is not just to speculate but to build working, 
implemented systems” (§6) and that “for any 
engineering effort to be taken seriously, the 
requirement for experimental evaluations of 
(physical and/or virtual) running software 
systems cannot go ignored” (§8).

« 13 »  I am also in agreement with Butz 
when he declares in the upshot that “sensory 
as well as motor noise is ubiquitous in our 
environment” and that “symbols do not ex-
ist a priori but need to be grounded within 
our continuous world.” Simple high-level 
symbol manipulation problems that ignore 
the low-level sensorimotor challenges can 
hardly lead to a system that may convinc-
ingly become cognitive.

« 14 »  Like several other researchers, I 
believe that the domain par excellence for 
testing machine learning models is robot-
ics. A simple robot with continuous noisy 
sensors in real-time action into the physical 
world is a fantastic challenge for such gen-
eral AI systems. In its current stage, CALM 
is not yet ready to face that kind of problem 
successfully. In the following paragraphs, I 
would like to address some of the directions 
I can envisage it taking in order to move for-
ward.

From continuous signals to discrete 
representations
« 15 »  One of the main limitations of 

CALM is the need for a predefined discrete 
representation of both the signals received 
and those transmitted by the agent. Also, 
time is considered as a discrete succession 
of cycles. However, many problems in com-
plex environments can only be properly 
addressed through continuous representa-
tions, which enable an agent to face prob-
lems on the sensorimotor level.

« 16 »  It seems more natural to start 
with continuous signals and gradually con-
struct discrete states as a sort of abstraction. 
This is the first step to going beyond sensori-
motor primitives and arriving in a symbolic 
dimension. It also applies to temporal ab-
straction because intelligence needs to slice 
the continuous flow into relevant pieces of 
time in order to recognize events or cycles.

« 17 »  In any case, schema learning 
mechanisms are not necessarily incompat-
ible with continuous environments. An ex-
tension of the schema used by CALM can 
be used to represent changes in continuous 
variables. Very basically, we can represent 
the anticipation of an increase or decrease in 
the value of a certain variable, or the tenden-
cy to converge towards some specific value, 
given some action. In this way, each schema 
realizes a kind of simplified regression, 

where in function of some conditions (con-
text and action), the schema can anticipate a 
continuous variation of some variable.

Noise and non-determinism
« 18 »  The definition and exploration 

of environments that I called “partially de-
terministic” (e.g., §2) should be considered 
worthwhile. The methods behind CALM 
were defined to focus on the discovery of 
deterministic regularities in an environment 
composed of deterministic and non-deter-
ministic phenomena.

« 19 »  For an agent, a complex environ-
ment can appear non-deterministic because 
its perception, control and understanding 
are limited in some way (partial observabil-
ity, noisy sensors, imprecise effectors, other 
entities acting in the same environment, too 
many complex causal relations, etc.). Appar-
ent non-determinism can be modeled either 
by creating stochastic rules, or by continu-
ing to search for causes.

« 20 »  Every roboticist knows the im-
portance of taking the noise and impreci-
sion inherent in sensory and motor appa-
ratus seriously. So far, CALM has not been 
equipped with any mechanism to treat 
noise explicitly. Even so, the presence or 
absence of noise could be represented as a 
cause of some perturbed anticipations, as in: 
a ∧ ~noise → b.

« 21 »  That said, the possibility of repre-
senting certain situations as stochastic regu-
larities could be incorporated into CALM, 
working as a complementary method for 
situations where deterministic assumptions 
are not possible. Such a method can allow 
the mechanism to search for probabilities 
in order to anticipate which is most likely to 
happen. Nevertheless, that kind of search for 
statistical regularities should not interfere 
with the search for causal relations.

Robustness and parallelization
« 22 »  Thomas Degris says that for “an 

agent to take complex decisions or to under-
stand a complex environment, perhaps it is 
unavoidable to consider a large number of 
variables or signals” (§3). This is certainly 
correct, especially when the problem is close 
to the sensorimotor level.

« 23 »  As Stojanov claims, CALM resem-
bles a completely deterministic “monolithic 
single-thread algorithm” (§3). In nature, 
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animal as well as human brains do not oper-
ate as a centralized hierarchy, but more like 
cooperative and concurrent modules work-
ing simultaneously in several levels, and not 
necessarily in complete, harmonious coher-
ence. The power of intelligence stems from 
the diversity of many effective imperfect 
methods, and decisions emerge from con-
flicts and negotiations among them (Min-
sky1988: 308).

« 24 »  I believe that any good construc-
tivist AI program will have to end up being 
more or less in accordance with that system-
ic modular perspective of the mind, where 
learning will appear as a continual construc-
tion and reconstruction of modules, each 
one working in a specific level and domain, 
but in constant interaction with other mod-
ules. Once within this conjuncture, CALM 
could be imagined as the engine inside some 
modules, under the baton of some principle 
responsible for coordinating the modules in 
the whole system.

« 25 »  Moreover, concerning robust-
ness, parallelization is a very powerful 
means to break complexity and to deal with 
complex environments. The neural organi-
zation and functioning of the brain is highly 
parallelized. Although it was not mentioned 
in my article, CALM can implement a kind 
of parallelization, since the construction of 
each anticipatory tree (that models the dy-
namics of one single variable) can be real-
ized independently from the other trees, i.e., 
in different separated threads.

« 26 »  Another way to be robust is to 
pay attention to what is important (Foner 
& Maes 1994). The problem of indistinctly 
correlating actions with changes in sensor 
data is computationally unfeasible for any 
non-trivial application. This problem be-
comes more manageable by restricting the 
set of sensor data the agent attends to, or the 
set of internal structures that is updated, at 
particular instants. In the same vein, CALM 
implements a focus of attention related to 
the affectively important variables.

« 27 »  Degris writes that “while trees 
can, in principle, take advantage of specific 
structures in the data, they also have issues 
that can make them impractical to use as 
a life-long constructivist agent in the ac-
tual world” (§3) and that “even when some 
of the system dynamic may be factorable, 
there is no guarantee that other represen-

tations, such as value functions or policies, 
will be factorable” (ibid). Some technical 
choices with regard to CALM’s methods 
should be revised, especially with regard 
to the management of episodic memory 
and anticipatory trees. It is evident that a 
robust algorithm for such general purposes 
must be carefully studied. In other words, 
the algorithms in CALM will probably need 
certain improvements.

« 28 »  Degris cites the “Horde” archi-
tecture, suggesting that it can “represent 
knowledge similar to schemas but also 
more general knowledge” (§4). Horde can 
construct “demons,” which are generalized 
value-functions for given partial policies. 
Those demons can be learned in parallel by 
an efficient extended reinforcement learning 
method during the actuation of the agent. 
However, I think that the knowledge repre-
sented by Horde is not that similar to what is 
represented by CALM.

« 29 »  Space does not allow for a more 
detailed comparison between CALM and 
Horde. However, it is evident that architec-
tures like Horde will be a precious source of 
good strategies for dealing with large real-
time sensorimotor problems, translating 
them, when necessary, into symbolic terms. 
I believe that, the crucial problem of using 
efficient forms of representation aside, the 
most important challenge is to find a way 
to connect consistently the sensorimotor 
(continuous, noisy, real-time, large scale) 
domains to basic symbolic domains, and the 
latter to more abstract ones.

From lower to higher levels
« 30 »  Another major question repeat-

edly mentioned in the commentaries is the 
passage from lower levels of interaction, 
based on sensorimotor primitives, to higher 
levels, based on abstract concepts. The ques-
tion can be formulated like this: Is CALM 
able gradually to construct successive lay-
ers of abstraction in order to represent its 
knowledge?

« 31 »  According to Jean Piaget (1957), 
from a fragmented sensorimotor universe, 
intelligence builds elementary notions, de-
fines relations, finds regularities and even-
tually constructs an objective, substantial, 
spatial, temporal, regular and external uni-
verse, independent of the subject itself. A 
subjective “reality” will emerge from the in-

creasing coherence between schemas in the 
course of these adaptions.

« 32 »  In §3, Stojanov claims that CALM 
does not provide a way to build more ab-
stract structures from simpler sensorimo-
tor interactions. At least he recognizes that 
CALM is able to create synthetic elements 
that enlarge the sensorial context with 
something that is beyond perception. Even 
if this is simple, the synthetic elements are 
certainly a form of abstraction since they do 
not correspond to any sensory input. How-
ever, once CALM places the synthetic ele-
ments side by side with the sensorial ones, it 
does not create layers. The context is repre-
sented as a single flattened array. Evidently, 
we cannot go too far without some kind of 
robust structuring mechanism in order to 
organize knowledge into different levels.

« 33 »  In human beings, cognition is in 
some way the construction of several lay-
ers of abstraction in order to understand 
and interpret experiences. If this process is 
compared with flying from the Earth to the 
Moon, the inference of synthetic elements 
would correspond to the takeoff. It does not 
give us too much altitude but it is crucial to 
start the voyage.

« 34 »  Building synthetic elements does 
not constitute a form of abstract or sym-
bolic thought by itself, but such a process 
contains the basic insight of what we could 
call “concept invention.” Synthetic elements 
allow the designation of entities that cannot 
be represented from combinations of direct 
sensory perceptions. Thus, the possibility 
of representing unobservable conditions is 
a breakthrough along the road from mere 
direct perception to more abstract forms of 
understanding.

Grounding symbolic concepts 
on sensorimotor flows
« 35 »  Guerin correctly claims that high-

level cognition is very much grounded in 
sensorimotor intelligence (§4). I believe 
that extracting significant symbolic con-
cepts from interactive sensorimotor flows is 
one of the key challenges for AI today. The 
robotics community and the symbolic AI 
community can be seen as digging tunnels 
on the opposite sides of a mountain. Despite 
a lot of progress, a consistent integration of 
contributions from the two sides is still in-
cipient. The same metaphor can be used to 
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refer to the relation between neuroscientists 
and psychologists. As pointed out by Guerin,

“ there are some works in cognitive science that 
are beginning to attempt to address the issue of 
providing some theoretical framework to account 
for how a sensorimotor level can connect with 
higher levels of cognition.” (§5)

In fact, the search for mechanisms capable 
of doing so will draw on the findings from 
all these fronts: high- and low-level, compu-
tational and cognitive sciences.

« 36 »  Moreover, as Thórisson says,

“ due to the high number of combinatorics that 
a complex environment will produce, through 
countless interactions between its numerous ele-
ments, an agent must create models that isolate and 
capture some essence of underlying causes.” (§3)

Following constructivist principles, I would 
suggest that the passage from the sensori-
motor to the conceptual domain is possible 
through a series of abstractions where, at 
each step, a large number of localized, con-
text-dependent, quick and small elements 
are coordinated in more general, independ-
ent elements. Because CALM is not able to 
do so, Stojanov’s claim in his upshot is cor-
rect: it can be seen, at best, “as a model of the 
empirical abstraction but not of the reflec-
tive abstraction.”

« 37 »  In the same vein, Mark Bickhard 
says that “CALM… is built on sensation 
models of perceiving and on singleton ac-
tions.” (§4). I am in agreement with him 
when he claims that “anticipations concern-
ing possible interactions with the environ-
ment… occur with respect to whole patterns 
of interaction, not just singular actions” 
(§5).

« 38 »  Enabling the mind of an agent to 
learn and think in terms of “whole patterns 
of interactions” is another major challenge 
in AI. These patterns must be related in two 
ways:
1  |	 spatially, to high-level constructed ob-

jects, and
2  |	 temporally, to abstract events, i.e., 

“cognitive concepts for structuring ex-
periences and thus for perceiving the 
environment in chunks that may be 
symbolizable” (Butz §8) or “temporally 
abstract prediction[s]” (Degris §4).

CALM and CAES
« 39 »  Thórisson points to the lack of 

a clear connection between CALM and 
CAES models. Stojanov claims that the de-
cision to introduce the two entities (body 
and mind) was somewhat arbitrary. Fur-
thermore, Bernard Scott expressed his dis-
appointment with the way the term “mind” 
was employed in my article. I agree that the 
relation between CALM and CAES was not 
developed in the paper, and that the hyper-
flip experiment does not illustrate that 
relation. So let me try to make up for this 
omission.

« 40 »  CAES is an architecture that 
connects concepts from cybernetics, the 
theory of autopoiesis, dynamical systems, 
and affective AI. It is based on the defini-
tion of three entities: environment, body, 
and mind. CALM is the engine that plays 
the role of the cognitive system in the 
mind. Besides a cognitive system, the mind 
includes an affective system (responsible 
for evaluating the perceived situations), an 
emotional system (directed to the internal 
body states), and a reactive system (direct-
ed to the body effectors).

« 41 »  Ross Ashby (1952) defined the 
organism (or the agent) as a system com-
posed of a set of essential variables that 
must stay within a certain physiological 
normality (limits of viability) in order to 
preserve the system’s integrity and, conse-
quently, the organism’s survival. A given 
behavior contributes to the agent’s adap-
tion if it ensures the persistency of these es-
sential variables within its viable limits. The 
presence of essential variables assumes that 
the agent has something like an internal en-
vironment. That is the body (Parisi 2004).

« 42 »  In nature, organism and envi-
ronment can exert opposing forces with 
respect to the global system’s flow. How-
ever, only the organism is at risk of disin-
tegration, of disappearing as unity. A non-
destructive dynamical coupling is reached 
in the relation between the two systems 
when the organism interacts with the en-
vironment in order to ensure its self-pres-
ervation.

« 43 »  Randall Beer (1995) integrated 
the cybernetic concept of organism and 
autopoiesis using dynamical systems. The 
adaption criterion is abstractly represented 
as a zone in the space where the flow of the 

system must remain. The limits of adaption 
are the frontiers of that region within the 
global system space (composed by agent 
and environment), and the agent is con-
sidered adapted to the environment if its 
activity drives the global system’s trajectory 
in such a way that it never escapes from 
those frontiers.

« 44 »  I agree with Scott when he says 
that “humans, like other biological or-
ganisms, are dynamical systems, far from 
equilibrium.” Even if my article does not 
address this issue, CAES architecture was 
imagined to correspond to a definition of 
an agent as a system far from equilibrium, 
in the sense proposed by Bickhard (2009a) 
or Xabier Barandiaran and Alvaro Moreno 
(2008).

Intrinsic motivations and curiosity
« 45 »  Stojanov observes that the intrin-

sic motivations exhibited by CALM “can 
be related to low-level physiological drives 
(hunger, pain-avoidance) with no possibil-
ity for development of more sophisticated 
forms of motivations such as curiosity” 
(§4). I agree that the motivation system of 
my model is still far too utilitarian, even 
though some effort has been made to build 
an intrinsically motivated agent, which is 
consistent from the perspective of an em-
bodied AI. It is evident that motivation is 
also linked to the subject’s activity itself. 
Drinking water because we are thirsty is a 
kind of behavior that can be easily anchored 
in a biologically-driven explanation. Other 
behaviors, such as playing checkers, listen-
ing to music, or writing scientific papers, 
can hardly be explained by simply referring 
to physiological needs.

« 46 »  Nevertheless, CALM imple-
ments the notion of curiosity for explora-
tory behavior. In naive AI approaches, 
curiosity usually means doing random ac-
tions from time to time. In CALM, there is 
a measure of exploratory utility that allows 
the agent to plan actions that may lead to 
new discoveries, or new knowledge that 
would enhance its world model. The mech-
anism follows two behavioral policies: one 
to optimize the affective signals, and an-
other to optimize the gain of knowledge 
related to relevant variables. The choice of 
what action to do depends on the weight-
ing of these two policies.
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Language and reflectivity
« 47 »  Thórisson claims that artificial 

general intelligence cannot be done “with-
out some form of self-programming on the 
part of the machine, which in turn cannot 
be achieved without transparency of its op-
erational semantics” (§4) and finishes by 
questioning the power of the CALM schema 
formalism “to support models of self… and 
their ability to support self-inspection” (§6). 
Similarly, Scott says that “CALM ignores or 
takes for granted that which is… peculiarly 
human in human cognition: the ability to 
communicate and compute using… ‘signifi-
cant symbols’” (§3).

« 48 »  It is evident that those capacities 
are the notable characteristics of high-level 
intelligence. But to stay in accordance with 
constructivist principles, I believe that those 
abilities emerge as a result of the process of 
learning and interpreting the experiences 
on abstract levels. Piaget (1953) suggested 
that the basic principles regulating intellec-
tual functioning remain unchanged over a 

lifetime, and that increasingly refined skills 
and knowledge result from the gradual com-
plexification of the underlying constructed 
knowledge structures.

« 49 »  To summarize my point, I do not 
believe that the absence of language or self-
investigation represents a particular lack in 
the mechanism. In fact, the simplicity of the 
problems faced by CALM for now, as well as 
its non-existent capacity for creating differ-
ent layers of abstraction to interpret its ex-
periences, do not allow the agent to have the 
faculty for doing language or self-awareness.

Conclusion
« 50 »  The commentaries pointed out 

many aspects of my model that can be im-
proved, such as the lack of sensorimotor 
grounding of the symbolic elements ma-
nipulated by CALM and the impossibility to 
create more abstract levels of knowledge to 
represent the agent’s experience. I am con-
fident that improved versions of my model 
will be able to deal with these problems, in 

particular extending it to be modular. In this 
way, the agent will be equipped with more 
refined sensorimotor apparatus, capable of 
realizing some pre-processing of signals, 
coupled with other modules capable of do-
ing some preliminary computing in order 
to solve some basic sensorimotor problems 
at a low level, filtering the data that must be 
sent to the first symbolic modules. Finally, 
a more sophisticated form of abstraction 
needs to be incorporated into the algorithm 
in order to allow the construction of an or-
ganized structure of anticipatory modules, 
acting at different levels of abstraction.
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